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Why is retail demand forecasting important 
& interesting?

• Chaos in retail
– High street, out-of-town, on-line

• New products, services and channels

• Logistics and environment
– Packaging
– Availability

• Service vs inventory: the trade-off
– Poor forecasts, poor availability, excess stock: Costs

• Technical issues: 50K products x 400 stores, daily: 200K on-line 
offerings, human factors, new methods

• Big Data
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Demand forecasting methods

• Expert judgement
• Individual                                                 group

• Customer surveys

• Extrapolation based on past sales
– Identify pattern in the dats

• Causal methods including sales drivers (promotions, weather, events)
– Identify causal drivers

✓Combination
ttttt tfyyyfy  +=+= −− )(),..,,( 121

US retail sales: value

Statistical methods vs 
machine learning



But the role of a demand forecaster is not a happy one!

The chief executive of Marks & Spencer is to assume direct leadership, 
sacking the clothing, home & beauty managing director after publicly 
criticising chronic product availability.

He said a February promotion for jeans badly backfired when M&S 
failed to buy enough stock and sold out. "That led to us having some of 
the worst availability in casual trousers I’ve seen in my life," said Rowe.

100% service!



Challenges in Retail Forecasting
• Strategic decisions

– Rapidly changing competitive environment
• channels

– Store locations
– On-line / in-town presence
– CRM issues, e.g financing, loyalty cards

• Tactical
– Categories and assortment

• Brand forecasts

– Promotional plan
– On-shelf availability and service level
– Distribution centre planning (space, fleet, staffing, 

service): volume forecasts by size and store

• Operational
– ‘Big data’

• SKU x store models for promotional planning and price 
optimization

– Short life cycles/ new products/ intermittent demand
– Rapid replenishment

Online shares of Retail Trade



Forecasting Store Sales

• Rapid change in UK market
– Shift away from out-of-town to convenience
– Shift to on-line
– Shift to low price

• New store location models
– Variables: distance, location and image, services, 

competition: historical geographical set-up
– Current Stores provide a biased sample
– Decisions based on models + judgment
– BUT changing purchasing behaviour and the shift to 

on-line?

Appraisal used for store closures
The problem
• Current data on sales poor predictor
• Interaction with on-line
The result
• Reliance on judgment

Strategic



Product level demand forecasting 

Decisions:
• Category (tactical)

– Brand, sku mix

– Space allocation

• Brand
– Promotional strategy (frequency)

– Feature & display

• SKU (operational)
– Revenue Optimisation

• SKU x Store
– Segmented stores (e.g. in-town vs out-of-town)

• Distribution Centre: Store x volume
– Logistics plan: DC volume

Aggregation 
approach?

No research on 
DC dependence 
on demand?

Tactical & 
Operational



Product level features I
• Forecasts needed within different hierarchies

– Time
• Daily at store level for replenishment
• Weekly at DC level for logistics (picks)

– Product
– Supply chain 

• Collaboration?

– Consistency needed down each hierarchy

• Data characteristics
– Stock-outs: demand vs sales

• Limited data, new technologies (RFID), statistical models

– Intermittence (lots of it)

Multidimensional hierarchies

Amazon:Out of stock ignored Out-of-stock treated as missing values

The forecasting accuracy punch line: 
hierarchies, stock-outs, intermittence all matter

Conclusions:
Better stock control



• Seasonality

– Multiple seasonalities

– Weekly and daily seasonals interact

• Weather impacts

– Beer, ice-cream, barbecue

– But forecasts: horizon, region?

• Events

Product level features II

Daily and weekly beer sales

World cup effects on beer
– win or lose

Improved model forecast accuracy
- but in a model?



Product level features III

• Promotions
– Promotional type

– Category

– Lagged effects
• Black Friday stealing sales from Xmas

• On-line reviews and social media

Promotional effects: price, feature and 
display across categories

Many variables



New solutions in SKU level forecasting

• Aggregation and consistency
– Top down vs bottom-up vs middle out

– Aim for consistency
• But no consistent best performer

• Disaggregation and explanatory variable effects
– Disaggregate models needed for heterogeneous effects

• Store level

• Category SKUs

– Many variables
• But which ones matter?

• Price-promotional optimization



Explanatory variables in SKU level models

• Focal price-promotion variables: Xbp

– Promotion types (Temporary price, BOGOF), feature, display

• Focal brand competitors: Xb1

• Competitors same pack:X1p

• Competitors other X11

+

• Weather, events, holidays, seasonal factors

+

• Other category variables

+

• Product reviews, social media

Tactical & 
Operational

Machine learning methods:
• Solution is not automatic
• Benefits in accuracy?
• Price optimisation?



Evaluation
- to choose a ‘best’ method, evaluate alternatives

Key issue: relate to decision problem and lead time• Mean Absolute error

• MAPE most often used

• Define Relative Mean Absolute Error (compared to benchmark method B):

• Summarize over series (for fixed lead time):

• Error < 1 method better than benchmark
• Error > 1 method worse than benchmark
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The issue:
• Company KPIs poorly define
• No link to decision problem
• Software poorly configured

Consequences:
• Service/inventory tradeoff
• Inappropiate choice of forecasting method



The current ‘state of practice’

• Standard software solutions inadequate

• Limited causal methods

• Poor error measures

• Intermittent data poorly modelled



Conclusions from SKU modelling of regular 
products – what could be gained

• Base models using last promotional uplift wholly inadequate

• Pooling data and models across SKUs and Stores improves 
estimation and forecast accuracy

• Increasingly complex models deliver value
– Using focal SKU

– Using core competitive SKUs 

– Using all SKUs in category

• Non-linearities?
– Software companies emphasizing its importance
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Practical issues:
• Best ‘simple’ methods?
• Are non-linear effects valuable?
• Use of software

• Judgment?



New Products I
Defined as products with less than 2 seasons data history
• Decision context

– Initial stocking
– Short Life cycle (fashion goods: electronics)

• Buying ahead: re-order?

– The assortment decision: adding a new SKU to a category
– Distributional consequences of new SKU

• How prevalent?
– In UK non-food hardware, homeware and garden 

• 50% in data base have less than 2 years history

• Retailers as manufacturers 
– Same techniques: market testing, choice models, diffusion

• Fashion forecasting as new product forecasting
– Literature on non-linear methods unconvincing
– New methods based on clustering new products based on features

• colour, price, segment, + click data
• Forecasting models for clusters

High variability?



New Products II
New product forecasting methods for retail

• Continuity of data with past SKUs

• Judgment

• Structured judgment
– Analogous products

– Interactions with manufacturers ( & their forecasts)

• Attribute models of similar products (Vaidyanathan, 2011)

• Bayesian methods based on analogous products
– Clustering (see Goodwin et al.)

– Clustering+regression within clusters

• Major application possibilities in fashion forecasting but…;

M&S’s views

No/ little modelling and 
evaluation

Practical impact: high



Channels
On-line, catalogue vs Bricks & Mortar

• Rapid growth (in some 
categories) in on-line

• Competition, cannibalization   
and complementarity  between 
channels (strategic/ tactical)
– Generic
– Niche
– Search

• On-line shopping (Operational)
– Web-site design and effects on sales
– Individual Customer Models

• Recommender systems (If you like 
that you’ll like this)

• Returns (and profitability)

Online shares of Retail Trade



Channels: internet sources (social media) and big-
data: What we know

• Customer behavioural data
– Useful for short-term sales generation

– Potential
• At SKU level

• Promotional ‘customer centric’ targeting (Kolassa)

• Social media data
– Some value for short-term forecasting of ‘instant’ 

impulse products, e.g. games, music

– Weak signals (Kolassa, 2017)
• Do they help?



Retail forecasting 
in practice

• Commercial software includes ‘demand sensing’ causal capabilities and 
non-linear methods.

• Few companies have routinized the use of these more advanced 
procedures; promotional modelling remains simplistic. 

• New product forecasting remains heavily judgmental and informal. 

• Intermittent demand is a key problem where current ‘best practice’ 
research has not been adopted. 

• KPIs and accuracy measurement is typically not given sufficient attention. 

• Lead time issues linked to the supply chain are rarely considered. 

• The area of demand planning in retailing is manpower intensive where 
staff may have overly limited technical expertise. 
– Some companies have a ‘data science’ team to support the core forecasting activity. 

• Judgmental intervention superimposed on model based forecasts remains 
a significant element in retail forecasting. 

Interviews + presentations from 10 international 
companies: Household, groceries, fashion, 
convenience stores

More tentatively, the diffusion of best 
practice modelling remains slow. 



What do we (not) know?
• Advanced causal methods on SKU x store data offer (substantially) 

improved accuracy

• Advanced new product methods promising
– Clustering on attributes

• Machine learning methods have potential
– But not yet well validated on a range of applications

• Social media and search data
– Probably not valuable for aggregate retail forecasting

– Delivers for individual customer behaviour (the customer of one)

• Big data from customers, IoT and in-store unproven

– Within day valuable

• On-line and bricks-and-mortar interaction?

Should be 
implemented

Speculative

Unhelpful/ 
unknown

No research



Issues of practice
- what gets forgotten and how can improvements be achieved?

• Messy inadequate data
– Incomplete short histories; new product introductions; intermittent demand; 

out-of-stock; promotional types
 Routine algorithms fail to manage exceptions
– Event history
 Better methods available (machine learning?, but lack data on which they rely
 Often not implemented

• Expertise
– The lack; no training, poorly designed software

• KPIs
– The need to link to decisions
– Forecast error history and inventory calculations

• Value added of judgmental interventions
– How much should organizations rely on their software?
– How can interventions be made more effective?

• By practitioners
• By researchers
• By software designers
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