The UK's Future in Space

Commercial Small Satellites in the Military Domain

Prof. Sir Martin Sweeting FRS FREng
Executive Chairman
Surrey Satellite Technology Ltd

"Doing Space Differently"

O S E 1

Space is now an essential infrastructure for all national economies, their well-being and security

Communications

Timing & positioning

Land use/environment

Climate & Disasters

In 2019, everyone has access to space

Space is no longer the preserve of super-powers or the most technically-advanced or wealthy of nations ...

The emergence of small, highly capable but inexpensive satellites has put sophisticated space assets with reach of every nation

The UK pioneered modern small satellites

The world's first modern 'micro-satellite' launched in 1981 exploiting the enormous investments & developments in 'COTS' consumer micro-electronics to build small satellites at a fraction of the normal cost and timescales...

Decades -> months

Tonnes -> kg

£Bn -> £M

This has catalysed a totally new commercial and institutional approach to space -- 'NewSpace'

The UK led the way...

1985: UoSAT-2 provided global store-&-forward email – before the internet

2001: UoSAT-12 became the world's first web server in space

JK-DMC carrying a Cisco router demonstrated a GR Virtual Missions Operations Centre using microsatellites + internet www.uosa7-12.com 2005: UK-DMC carrying a Cisco router demonstrated a UK - USAF

Also in Earth Observation constellations

International Disaster Monitoring Constellation (DMC)

RapidEye Commercial EO Constellation)

High resolution Earth Observation constellations

3x EO minisatellites constellation – launched in 2015 7-year op lifetime 1-m GSD (0.85-m) pan, 4-m 4-band m/s, 3000km swath length

Video from space...

Carbonite-1 launched 2015 on PSLV

- 1-metre GSD pan & 4m m/s
- 75kg microsatellite 1/10th of the cost
 8 months
- using COTs devices
- 1m HD (4k) colour video 30 fps

Carbonite-2 launched in January 2018 on PSLV

Video from Space

Low-cost radar remote sensing (SAR)

All-weather day/night sensing

Low-cost S-band SAR minisatellite

Maritime surveillance + AIS

De-forestation, flood monitoring

Launched on PSLV in Sept'2018 with S1-4 optical satellite

SURREY

"NewSpace"

The promise of high-speed low-latency broadband connectivity worldwide

The potential to bring remote regions into the global economy

Orbital debris & space traffic management

Space debris is a issue for all of the space community

The satellite community has to come up with solutions

- Intrinsically safe satellites
- De-orbit technologies (tethers, sails, electric propulsion)
- Clean-up missions with capture technologies

Space traffic control

Space debris – active removal

RemoveDebris mission

EU-funded project led by Surrey

Two systems:

- Net deployer (5m ø) with Cubesat target
- Harpoon System and target honeycomb panel on retractable boom

Deployable Sail for re-entry after experiment Ejected from the ISS in July 2018

Net demonstrated in Sept 2018 Harpoon in Feb 2019

RemoveDebris – net demonstration in orbit

16th September 2018

TIMELINE - video captured in orbit by mothership

- 1. Deployment of target 'debris' sub-satellite from mothership
- 2. 'Debris' sub-satellite deploys its panels and tumbles
- 3. Mothership deploys the net to capture the 'debris'

RemoveDebris – harpoon demonstration in orbit

February 2019

TIMELINE - video captured in orbit by mothership

- 1. Harpoon's target deployed on an extendable boom from mothership
- 2. Harpoon fired from mothership at target
- 3. Harpoon pierced target and captures with its tether it as it fractures from boom

Space Situational Awareness

The UK contributed to the Canadian SSA Sapphire mission

Providing tracking data on Resident Space Objects (RSOs)
 in Earth orbits between 6,000 km and 40,000 km

The UK could contribute improvements to SSA

- The tracking of smaller objects, (down to 1 cm in size)
- More frequent and more precise tracking in order to maintain more accurate orbits
- Assessments of hostile satellite configuration, operational status and current activity
- Launch detection
- Warning of space weather events

UK optical rapid-revisit constellation

Operational system Building upon Carbonite (1&2)

- 1-metre GSD imagery incl. video
- Rapid revisit
- Rapid tasking capability responsive imaging
- Sovereign capability independence of action
- Contributing to allies capabilities sharing the burden
- Industry working with MoD increasing agility and VFM

UK sovereign launch

- The cost of launch has been constraining the smallsat market and driving the manufacturing cost of smallsats – cost of launch is often 2-3 times the cost of the satellite
- Mega-constellations are driving satellite manufacture costs down – this will then require low cost small launchers for replenishment
- By 2030, some 11,000 launch demands have been estimated for new constellation installations and replacement missions - this is stimulating many new small launcher initiatives
- The UK will soon have Space Port(s) and a feasible opportunity attract business and to possess an endto-end sovereign space capability – at an affordable scale

Emerging trends...

Small satellites have exploited advances in microelectronics, whilst the structural designs have remained based largely on conventional techniques

But... new materials combined with robotics have given rise to new satellite/spacecraft manufacturing techniques that enhance small satellite capabilities and also further reduce cost and timescales

Robotic additive (and subtractive) manufacturing techniques now make possible product geometries that were previously physically impossible by human hands

Digital manufacturing provides freedom of location and dramatically increased speed of the design evolution and the product innovation cycle.

Digital factory

Software-defined satellites

In-orbit assembly

In-orbit manufacture

In-orbit assembly & reconfigurable spacecraft

In-Orbit robotic assembly of multiple 'mirror-craft to form large adaptable observation platforms

Reconfigurable apertures

In-orbit assembly of a 4.5 metre diameter mirror aperture could provide persistent video with a resolution of ~2 metres over a 100 km square from GEO

The UK has the national capability

69	satellites launched
38	launches (11 vehicles, 10 sites)
500 ⁺	orbit-years satellite operations
22	Galileo nav. payloads launched

Vertically integrated capability

we design them build them test them prepare for launch launch operate in orbit

nav. payloads in manufacture

Summary

- The UK has the national capability in small satellites to support MoD space to provide utility, value & capability.
- SSTL / MOD collaboration on Carbonite demonstrated the potential of commercial space technology to Air Command and the value of close collaboration with industry
- Commercial small satellite technology has been a positive disruptive force in the commercial world MoD can take advantage of this.

SSTL is the leading UK small satellite mission prime

