

Design considerations for bespoke military power supplies.

Who am I

- Matthew Bloxwich.
- Engineering Manager for PSU Designs.
- 22 Years Electronics industry experience.
- 16 Years designing power supplies.
- Knowledge of full design process.
 (Blank sheet of paper to Production ready design)
- Circuit design, PCB layout, Transformer Design, EMC testing, Designing to meet standards and Designing for Production.

Topics

- PSU overview
- Your specification
- The need for and benefits of Bespoke design
- Full custom or modular design
- EMC
- Thermal requirements
- Approvals

PSU Overview

Off the shelf

Modula design

Full Custom Design

Your Specification

What are the basics

- Input
 AC, DC, Fixed, Variable, Frequency, Range
- Output
 Voltage, Current, Number of outputs,
 Connections
- Mechanics
 Size, Weight, Fixings, Cooling
- Environment
 Operating temperature, IP
 Rating, Altitude, Salt Spray etc

What might you not consider

- Input
 Legislation (PFC, Fusing, leakage current),
 Earthing
- Output
 Power limited requirement, connector ratings, protection circuits
- Mechanics
 Thermal interfacing, Air flow,
 Safety requirements
- Environment
 EMC, Safety requirements,
 Approvals.

Your Specification

What does your industry need

- Do you need to meet specific standard?
- What are the EMC requirements?
- Are there any requirements for third party approvals?

The need for bespoke

Size/Shape

Form/Fit/Function

Input requirements

Output requirements

Environment

Approvals

The benefits of bespoke

- Designed to your specification --- No compromising on performance.
- Ability to have additional functionality --- Wish list of functions incorporated.
- Long life product --- The product is available as long as you need it.
- Product support --- Service and Technical data easily available.
- Easy upgrade path --- Accommodate future spec changes.
- Standards compliance --- Designed to meet the standards you require.
- Designing for long usable life and increased MTBF

Full custom or Modular design

	Modular Design	Full Custom
Size	Very compact	Adaptable
Shape	Adaptable	Very Configurable
Efficiency	Very High	High
Cost	High Cost	Cost effective

Modular or Full Custom Design

Modular or Full Custom Design

The Building Blocks

PFC Module

Off the shelf Module

Circuit based on well proven designs

Off the shelf Module

Circuit based on well proven designs

The Building Blocks

EMC Filter

Input filtering

Common Mode Chokes

X Class Capacitors

Y Class Capacitors

Output filtering

Drum inductors

Decoupling Capacitors

EMC

1. Emissions

Signals/noise given out by the PSU

Conducted and Radiated

2. Immunity

How the PSU perform when subjected to external signals/noise

Typical EMC plot

EMC

Example Plot from a modular design

EMC was not considered

1. Filtering required

- a. Input filter
- b. Output filter
- c. Input to output capacitance
- d. Screening
- e. Prevent switching noise

2. Layout

- a. Track lengths
- b. Switching loops
- c. Earthing points (standoffs)

EMC

How to get the heat out.

How to get the heat out.

Specification:
DC – DC
24Vin to 12Vout (24W)
2A continuous
5A peaks

Around 80% efficient

30W in for 24W out Total power loss 6W Or 15W during peaks

Specification:
DC – DC
24Vin to 12Vout (24W)
2A continuous
5A peaks

Around 93% efficient

26W in for 24W out Total power loss 2W Or 5W during peaks

- BOM cost reduction
- Easier manufacturing
- Lower input power requirement
- Reduced weight
- Significantly better efficiency 80% to 92%

Where are the losses?

Transformers

PCB tracks

MOSFETS

Snubbers

Diodes

Control circuits

Approvals

Agencies

Self Certification

Standards

Safety Standards e.g. EN62368

EMC Standards e.g. EN55032

Industry Specific standards e.g. EN54-4 (fire alarm PSUs)

