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AI/ML for situational understanding
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AlI/ML requirements for Multi Domain Operations at the tactical edge

Federated machine learning for multi-domain operations at the tactical edge
Cirincione & Verma 2019



What are the capabilities of AI/ML today?

Al Capabilities

Al Model

Complexity Al Scope

Identifies New Human-Like Apply New

Understands Patterns Learning Approaches  Contextually-
Cause & Effect Aware

Human-like learning & reasoning

»Identifies new patterns not seen before

»Creatively applies new approaches to solve new problems

Human-like Joint General > —Understands impacts & trade-offs in contextually-aware manner

R Correlated Learning Robustness to
Reasonlng Explainability Uncertain Data

Broad Different AI models are jointly trained

»Transfer of patterns & knowledge across models by sharing attributes
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»Improved composite task performance

MO dl Different AI models are trained independently

»Outputs (incl. explanations, uncertainty) are combined-coupled together
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—Incrementally improves learning of individual Al Tasks

Isolated
Al Tasks

NEGITA= S Al models are trained in isolation
»For specific Al Tasks with no interaction with other Al Tasks

»Outputs are independently delivered for actions/decisions

Spectrum of Al capabilities
Cirincione & Verma, 2019



Overcoming Al hype

Key distinction between ‘building the system right’ (high accuracy)
and ‘building the right system’ (high impact)

The post-1980s Al Winter was due to a failure of the technology to
meet user expectations despite often high technical performance

» The space of viable, impactful applications was much smaller
than developers and investors hoped

A solid evidence base for Al impact is needed to challenge the hype
that is once again surrounding technological advances in the field

Hows and Whys of Aritificial Intelligence for Public Sector Decisions:
Explanation and Evaluation
Preece et al. 2018



A model for explainable Al (XAl) requirements
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Interpretable to Whom? A Role-based Model for Analyzing
Interpretable Machine Learning Systems
Tomsett et al. 2018
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