Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET Objective: Fixed Asset protection from UW threats

Approach: Multistatic active specific patterns and collaborative arrangement to secure protection against a given index & speeds threats list.

→ must provide a thick enough continuous detection barrier for tracking all threats with enough reaction time

Page 1 DSFI 2019

Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 2

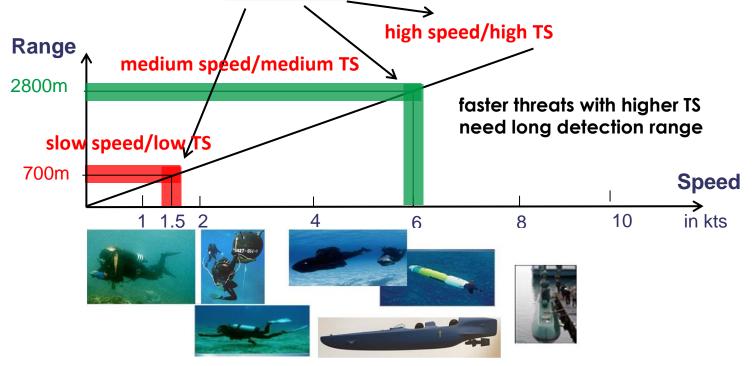
DSEI 2019

Objective: Detection of wide range of potential threats

	Device / Vehicle	Op. Speed	Autonomy	Distance	TS index
	Closed Circuit Diver (CCD)	< 1,5 kts	4h	6 Nm	> - 25dB
- Was	Open Circuit Diver (OCD)	< 1,5 kts	1h	1.5 Nm	>> -15dB
	Propulsion aid	~ 3 kts	4h	16 Nm	> -15dB
	Swimmer Delivery Vehicle (SDV)	~ 4 to 8 kts ~ 6kts	>4h	>32 Nm	Small/Big -15 to -5 dB
	Unmanned Underwater Vehicle (UUV) (UW drone)	~ 6 kts	Weeks - Months	>100Nm	Small/Big -15 to -5 dB
	Midget Firing range < 2-5 km	< 6 kts	Weeks - Months	>100Nm	> -5 dB

Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments


Authors: Louis RAILLON Michel FOUQUET

Page 3

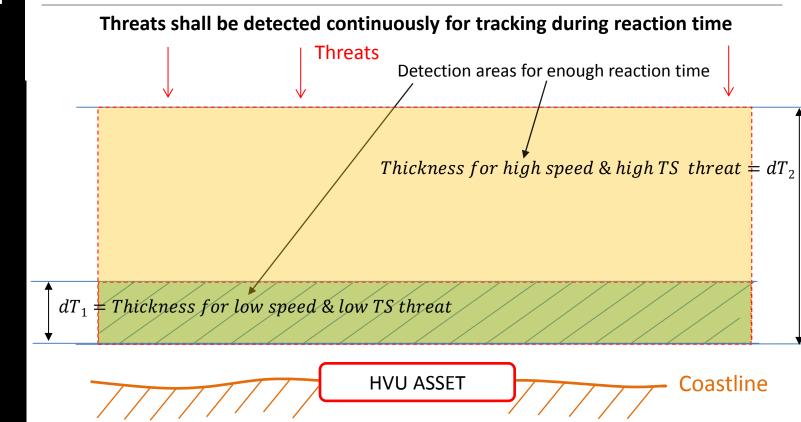
DSEI 2019

Objective: constant reaction time → Detection range adjusted to threat speeds

Primo-detection 15 minutes before reaching fixed assets

Wide Primo Detection range required to secure constant minimum reaction time

Thursday Sept 12th South Theater Panel discussion hosted by UDT

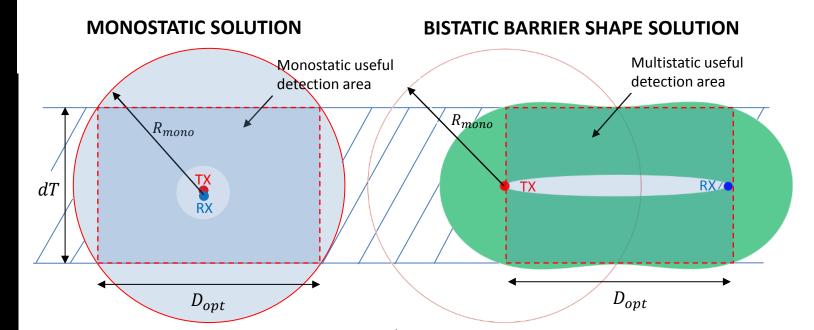

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 4

DSEI 2019

Linear barrier thickness versus threat type for needed reaction time


Thursday Sept 12th
South Theater
Panel discussion hosted
by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 5 **DSEI 2019**

Bistatic optimal TX/RX distance for linear barrier

Hypothesis: Same Tx/Rx characteristics and same Barrier Thickness

$$dT = 2R_{mono}/\sqrt{3}$$

Maximum bistatic detection surface is for $D_{opt} = \sqrt{8/3} \ R_{mono} \sim 1,63 \ R_{mono}$

Thursday Sept 12th
South Theater
Panel discussion hosted
by UDT


Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 6

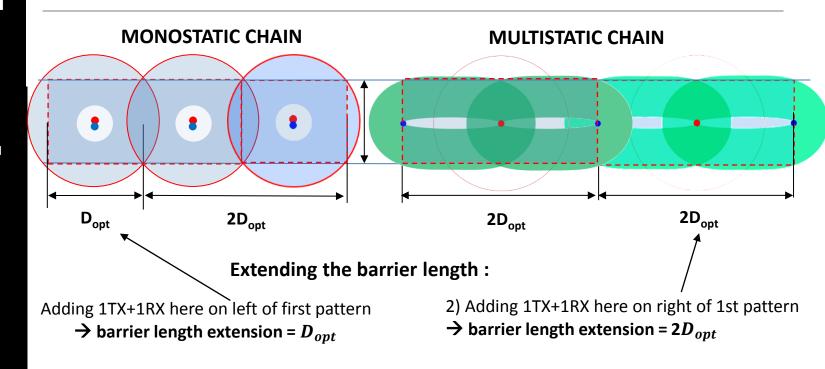
DSEI 2019

Monostatic versus Multistatic chain for linear barrier

- 1) Additional monostatic sonar shall be at distance $dL_{Mono} = \sqrt{8/3} \ R_{mono} = D_{opt}$
- \rightarrow Barrier length = $2D_{opt}$
- → Blanking zone size depends on pulse length

- 2) Additional RX shall be at distance D_{opt}
- \rightarrow Barrier length = $2D_{opt}$ \rightarrow bistatic barrier length is doubled
- → Blanking zone size depends on compressed pulse length

Multistatic barrier 1TX/2RX equivalent to 2 monostatic sonars barrier 2TX/2RX


Thursday Sept 12th
South Theater
Panel discussion hosted
by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 7 **DSEI 2019**

Monostatic versus Multistatic chain for linear barrier

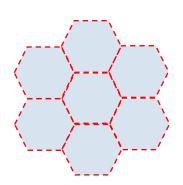
Extending barrier length requires twice less material in multistatism than monostatism

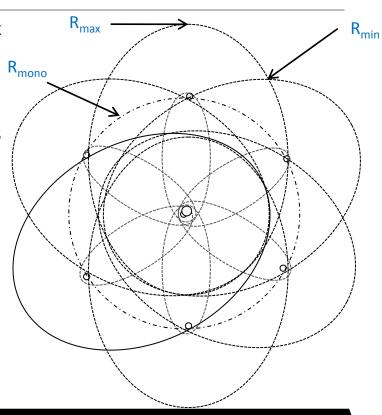
Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 8


DSEI 2019


Multistatic 1TX/6RX pattern for flexible surface covering

Solution = 6 RX on R_{mono} circle centered on Tx

- full detection is achieved inside the area
- without blanking zones
- Rmax= $(1 + \sqrt{5})/2*R_{mono}$ = Gold number
- 2 RX detections → 2 Doppler ≠ projections

Hexagone is perfect for **paving**:

This pattern is well suited for large surface covering and easy partial adaptation Additional advantage: 2 Doppler projections and blanking zones cross-covering

Multiple threats and large zone protection example

Thursday Sept 12th South Theater Panel discussion hosted

by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger

critical environments Authors: Louis RAILLON Michel FOUQUET

Page 9

Objective: Fixed Asset protection example for different UW threats **Approach:** Place multistatic specific patterns to secure a given reaction time for different TS/speed threats before reaching HVU Asset

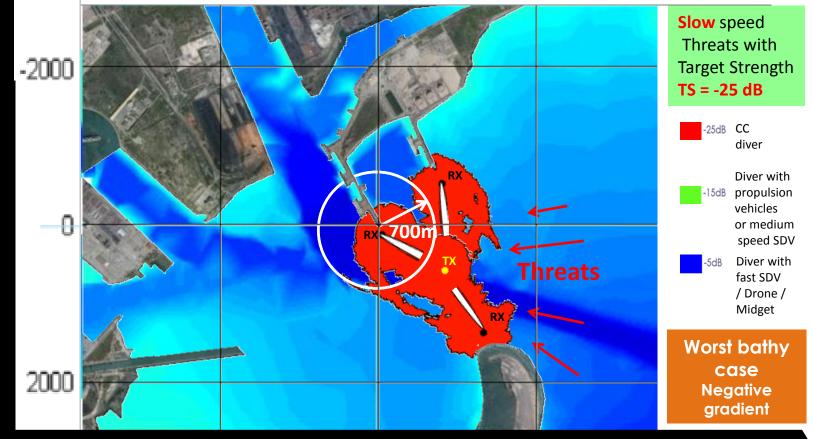
Location: Oil & Gaz Terminal at Fos sur Mer

Simulation Hypotheses: worst yearly bathycelerimetry, Sea State 6 noise, bottom slope considered for each pattern

Sonar material: TX and RX Thales modules fixed on the sea bottom (TX location at yellow points, RX location at black points)

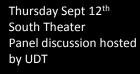
DSEI 2019

Thursday Sept 12th South Theater Panel discussion hosted by UDT


Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

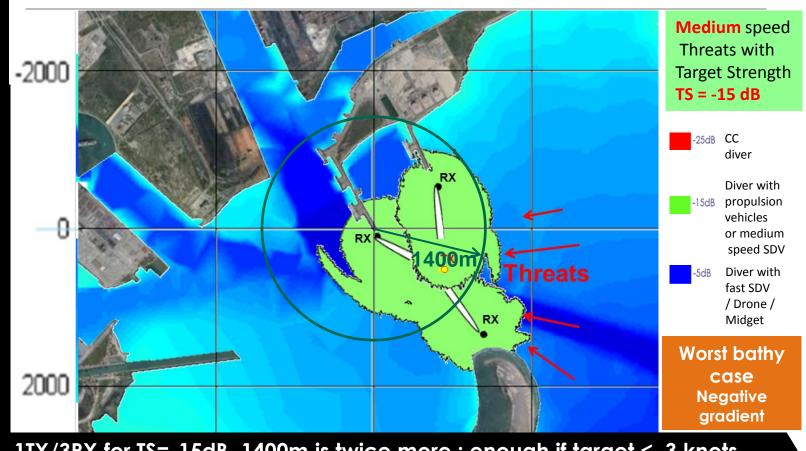
Page 10


DSEI 2019

Barrier for closing port entrance and continuous detection slow speed/low TS targets such as Closed Circuit divers

700m protection thickness achieved with 1TX/3RX + closing FOS entrance

Barrier for closing port entrance and continuous detection medium speed/ medium TS targets (aided divers, small drones ...)



Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

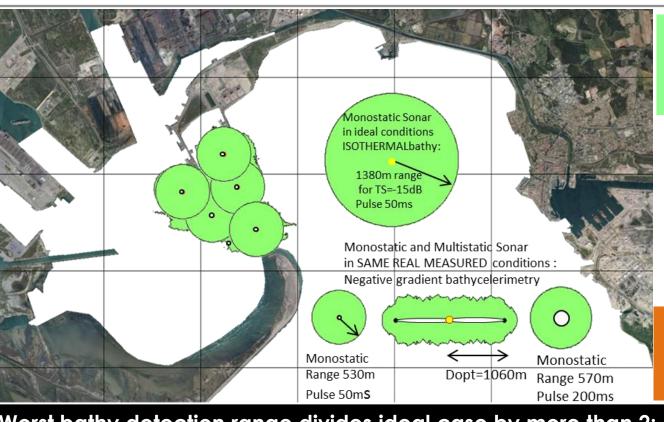
Authors: Louis RAILLON Michel FOUQUET

Page 11

DSEI 2019

1TX/3RX for TS=-15dB, 1400m is twice more: enough if target < 3 knots

Comparison of close protection for -15dB threats with multistatic versus monostatic solution in worst real bathycelerimetry case


Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 12

DSEI 2019

Medium speed Threats with Target Strength TS = -15 dB

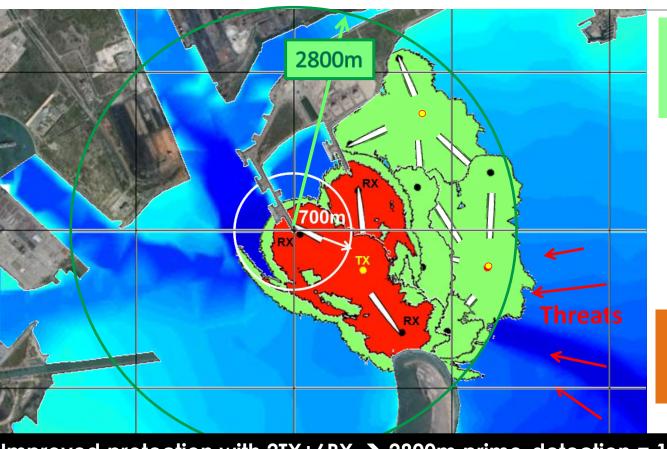
-15dB

Divers with propulsion aids or medium speed SDV

Worst bathy case Negative gradient

Worst bathy detection range divides ideal case by more than 2: 530/1380 Worst case protection need: Multistatic 1TX/3RX vs. Monostatic 5TX/5RX

Barrier for closing port entrance and continuous detection for target faster speed (SDV, drones, ...)


Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 13

DSEI 2019

Medium speed
Threats with
Target Strength
TS = -15 dB

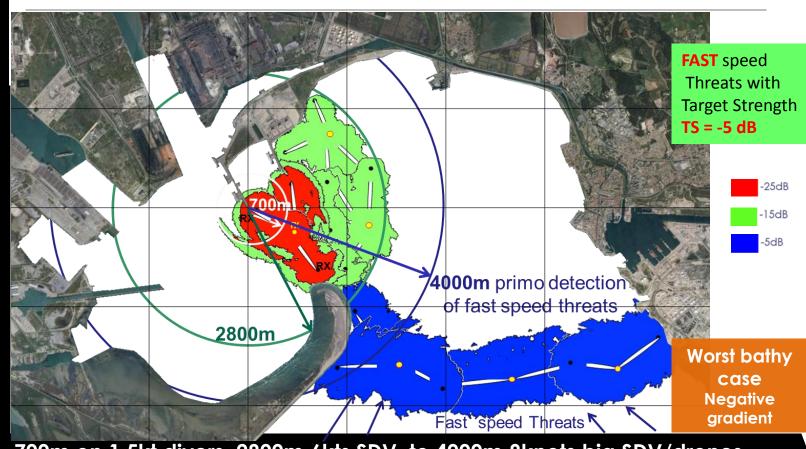
-15dB

Divers with propulsion aids or medium speed SDV

Worst bathy case
Negative gradient

Improved protection with 2TX+6RX → 2800m primo-detection = 15' @ 6kts

Flexible and closing successive areas with barrier or surface patterns for protection of various speed/index threats


Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 14

DSEI 2019

700m on 1.5kt divers, 2800m 6kts SDV, to 4000m 8knots big SDV/drones

Thursday Sept 12th South Theater Panel discussion hosted by UDT

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

Page 15

DSEI 2019

SEA TRIALS LESSONS LEARNT and PROVING Key Advances

Low Pfa/Long track

Inside ellipse

-200

X (m)

Stop

400

200

Start /

Blanking ellipse size

for 0.6 sec pulse

Prototype development (sectorial reduced power TX)

and testing at sea in 2015 and 2016:

- in coastal harsh conditions
 - Bathycelerimetry (< 0 gradient)
 - Sea bottom (downward-sloping)
- against a variety of threats,
- have demonstrated
 - Detection during transmission (RX as TX) → Long codes
 - Doppler Detection with High Resolution → NL limited
 - Low PFa / Long range achieved at sea with mature algorithms

-200

→ Multistatic solution key advantages confirmed

CONCLUSION / FUTURE

Thursday Sept 12th
South Theater
Panel discussion hosted
by UDT

UDT @ DSEI

Title: Multistatic underwater protection sonar best patterns for harbour and larger critical environments

Authors: Louis RAILLON Michel FOUQUET

- Multistatic patterns optimise a barrier and surface detection flexible shape with much less TX+RX numbers than monostatism
- Pattern choice for barrier chain or surface objective is shown
- Receivers can be shared with collaborative patterns arrangement
- Blanking zones are small with RX as TX processing, and can nearly disappear using specific patterns or arrangements
- A real example secures 15 minutes primo-detection for a large range of threats speeds & index

Page 16

DSEI 2019

→ Multistatic is the multithreat & large protection solution of choice, with minimal TX/RX material