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UAV AMOS-X6 with EO/IR camera payload.

GARM I with modular payload system.

Soldiers line up for a patrol mission with an 
UGV moving in front as advance guard.

Ellipses are used to compensate for localizing errors in track fusion.
The size of a ellipse increases with distance from detection to UAV. 

Threat 
Fusion

Tracking in an infrared video from an 
airborne platform.

Bearing angle 
measurements 
for gunshots.

Soldiers command an unmanned 
system to reconnaissance an area.
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H.-L. Besser et al. (2017). Hypersonic  Vehicles – Game  Changers for 

Future  Warfare? In: JAPCC 24, 2017, Transformation & Capabilities.   

Today: < 
Mach 20

Just to mention a UCAV threat of a peculiar kind:

Hypersonic Maneuvering Glide Vehicles (HGV)
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AI-assisted Perception for Military Action

Need for logical and reliable cognitive tools that

• exploit large sensor data streams,

• make context information accessible, 

• use of the heterogeneous sensors,

• check plausibility of sensor information,

• suggest options to act properly,

• help respecting constraints of action,   

• adapt to the intention of the user, … 

in general: unburden humans from routine and mass task to      

let them do what only humans can do – acting  responsibly. 
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• domain knowledge: explicitly

• probable causal structures

• transparent data fusion, mgmt.

model-based 

reasoning

(on-line)

model/inference

development

(off-line)

domain  

knowledge

data results

computer

neural network

processing

(on-line)

neural network

training

(off-line)

domain 

knowledg

e

data

results

computer

• Domain knowledge: via data

• Train NNs by data!

• black-box processing

Robust AI for Robust Systems-of-Systems

* Models, whenever available and for causal reasoning usable.

* NNs, when modeling is too complex and data available (!).
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A function f maps a value x (e.g. a photo) onto a value y = f(x) (person).

Neural network: a function with extremely many freely tunable parameters.

Training: Tune by labeled images” (natural intelligence!) these parameters.

Use phase: Apply the NN to arbitrary images. NNs approximate functions.
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Judea Pearl (*1936)

Bayesian Networks

Fellow, IEEE

Turing Award 2011

2018
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Fusion Engines – Link between Sensors, Context, Action
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Example: context from GIS data

 Intersection bearing with elevation model
=> 3D-Localization

 Line of sight calculation
=> exclusion of target positions
=> avoids track losses

 Terrain slope
=> possibly exclusion of target positions

 Road-maps
=> higher track accuracy and continuity

Open Streetmap
Tilt angle/

max inclinationDigital elevation model
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Context-based GMTI
• Road maps

• Topography

• Refined modeling

road map
tunnel

terrain / Doppler occlusion

target stops

low Doppler

target stops



© Fraunhofer FKIE 

road map
tunnel

terrain / Doppler occlusion

target stops

low Doppler

target stops
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Most Precious Context Information: Realistic Sensor Models

Target Tracking using Tensor Representations

Numerical solution of the Bayesian recursion for strongly nonlinear systems

 Prediction:

 Filtering:

Fokker-Planck Equation (FPE)

separation rank equal to the number of grid point, yielding

separation ranks growing exponentially with D . This makes

sparse grids only useful for moderately high dimensional

problems. In [17] real-time nonlinear filtering of a problem

involving a six-dimenaional state vector has been reported.

The method proposed in this contibution falls into the sec-

ond category of approaches: it starts by expressing the pdf and

the corresponding multi-linear operators in an additive tensor

format which was first introduced as canonical polyadic de-

composition of multiway arrays in mathematics by Hitchcock

in 1927 [18]. This tensor decomposition became very popular

in many scientific and technical areas like psychometrics

where it was called ’CANDECOMP’ (CANonical DECOMPo-

sition) by Carrol and Chang [19]. In phonetics it was termed

PARAFAC (PARAllel FACtor decomposition) by Harshman

[20]. In this work we use the name ’Kronecker tensor format’

for this particular tensor decomposition. In the novel approach

presented in this paper we study the time evolution of the pdf

by computing explicitly the matrix exponential of the Fokker-

Planck operator. Whilst the Fokker-Planck operator may be

written down exactly in the Kronecker tensor format, its matrix

exponential, also known as propagator, does not have this

convenient structure. An approximate decomposition of the

propagator which preserves the structure of the pdf in the Kro-

necker tensor format during the prediction step is proposed.

In order to maintain the number of rank-one components

the insertion of an additional tensor deflation step aimed at

reducing the number of components is required. The novel

approach has low computational complexity as only matrix-

vector multiplications of small-size matrices corresponding to

operators acting only on a few or even a single degree of

freedom are required. Likewise, the Bayesian measurement

update step can be carried out with a complexity growing only

linearly with number of degrees of freedom, provided that the

likelihood for the measurements is given in the Kronecker

tensor format [21].

This paper is organized as follows: In Section III we

describe the formulation of the Fokker-Planck equation in

the Kronecker tensor format and in the next two sections,

we present a novel approach to compute the Fokker-Planck

propagator and the design of the nonlinear filter in Kronecker

tensor format. In Section V, a passive tracking example is

studied and compared with the recently published tensor-based

filter by Sun and Kumar [21].

The following notations are used throughout this paper:

Vectors are denoted by lower case bold face letters, and upper

case bold face letters are reserved for matrices. The i -th

component of a vector a is denoted as [a]i , and i , j -th element

of a matrix is [A ]i , j . Calligraphic upper case letters are used

for tensors/multidimensional arrays. (·)T denotes the transpose

of a matrix. The diagonal matrix with diagonal a is denoted

Diag(a). We use the notation for the set of non-negative

integers N+
M = { 1, .., M } . ⊗ and ⊙ denote the Kronecker

product and the Hadamard product, respectively. The multiple

Kronecker product is abbreviated aD ⊗· · ·⊗a1 =
D
d= 1 ad .

II. PROBLEM STATEMENT

We consider one or several targets and collect all their state

parameters in the state vector x = (x1, · · · , xD )T ∈ RD . The

components of x may be the Cartesian coordinates of the tar-

gets, their velocities or higher order motion model parameters.

We model the state vector as a multi-variate random variable

and describe its time evolution by the continuous time Itô

stochastic dynamic system

dx = f (x, t)dt + G(x, t)dw(t) ,

where t ∈ R is the actual time, f : RD × R → R denotes

the drift vector, G : RD × R → RD × M denotes the matrix

of diffusion coefficients and w : R → RM is a Brownian

motion process with zero mean and covariance Qt .

Measurements of the target state are obtained indirectly

through the measurement equation at discrete time instants

tn :

y(tn ) = h(x(tn ), tn ) + νt n
, (1)

where h(x(tn ), tn ) is a possibly nonlinear function of the

target states and νt n
is a white Gaussian noise with covariance

R . For the sake of simplicity, we assumed that the covariance

for the process noise Q and the measurement noise R do

not change with time. In the following we assume that the

initial pdf of the target state p(x, 0|y t 0
) is known and that it

is independent from the process and measurement noise.

Now, the filtering problem can be stated as follows:

given the mesurements up to time tn collected in Y t n =

{ y t n
, · · ·y t 0

} and the pdf p(x, tn− 1|Y t n − 1 ) for the state at

the previous time tn− 1 find an estimate for the state vector in

a minimum mean square error (MMSE) sense.

This is usually accomplished in two steps: In the first

step, the given pdf is predicted to the next time tn . This is

accomplished by solving the Fokker-Planck equation which

governs the time-evolution of the pdf:

∂p

∂t
= −

D

i = 1

∂([f ]i p)

∂x i

+
1

2

D

i ,j = 1

∂2([GQGT ]i , j p)

∂x i ∂x j

(2)

and yields the density p(x, tn |Y t n − 1 ). In the second step,

Bayes’ formula is used to compute the posterior density

p(x, tn |Y t n ) =
p(x, tn |Y t n − 1 )p(y t n

|x)

p(x, tn |Y t n − 1 )p(y t n
|x)dx

(3)

where

p(y t n
|x) =

1

|2πR|1/ 2
e−

1
2

(y t n − h (x ( t n ) ) ) T R − 1 (y t n − h (x ( t n ) ) ) .

(4)

The MMSE estimator is then given by the mean of the

posterior density. The first step will be the topic of the next

section, whereas the second step is discussed in section IV.
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Figure 2: Exemplary time evolution of a target density in 2D using CPD tensors. 
The predicted tensor is computed as the solution of a Fokker-Planck Equation. 

The filtering step, which includes the current measurements into the data fusion process, is obtained by a 

point-wise multiplication of the sensor model and the prediction density. The advantage of the CPD 

approach is that on the one hand the degree of approximation can well be adjusted to the performance of the 

underlying computation system: a smaller discretization step size yields a better representation of the 

information and more CPD components allow the computation of complex functions. On the other hand, the 

curse of dimensionality is avoided to a degree by means of the factorization along all dimensions. Also, 

complex associations of sensor data to track instances can be avoided by multi target point set methods. As a 

consequence, tensor decompositions are promising candidates for tracking targets in big data scenarios. An 

application in a multi target scenario is straight forward, since also intensity functions can be represented 

using tensor decompositions. These functions are the first-moment approximation of a multi target density, 

that means they code the density function of the number of targets in the given field of view. The number of 

tracks can easily be obtained via integration, which can be done highly efficiently with tensor decomposition 

representations.  

4. NUMERICAL EXAMPLES FOR TARGET TRACKING IN BIG 

DATA 

The tensor decomposition approach for multi target tracking was evaluated numerically in several scenarios. 

In each of which N targets were distributed uniformly in the field of view. A sensor was simulated to 

measure the position of each target with additive random noise and a Poisson distributed number of false 

alarms. The mean number of false alarms was set to a parameter .  

A first, simple scenario shows the estimation process for N=5 and =5 in Figure 3. This obviously is a 

simple filtering problem, but the results demonstrate the reduction of false alarms and the precision of the 

remaining intensity mass (yellow) around the ground truth positions (red circles). It can be seen that the false 

measurements are filtered out from the initial intensity (at the left) to the updated representation after two 

steps on the right.  
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The tensor decomposition approach for multi target tracking was evaluated numerically in several scenarios. 

In each of which N targets were distributed uniformly in the field of view. A sensor was simulated to 

measure the position of each target with additive random noise and a Poisson distributed number of false 

alarms. The mean number of false alarms was set to a parameter .  

A first, simple scenario shows the estimation process for N=5 and =5 in Figure 3. This obviously is a 

simple filtering problem, but the results demonstrate the reduction of false alarms and the precision of the 

remaining intensity mass (yellow) around the ground truth positions (red circles). It can be seen that the false 

measurements are filtered out from the initial intensity (at the left) to the updated representation after two 

steps on the right.  

Bayes’ Theorem
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Real World Likelihood Functions for Advanced 

Sensing
Sensors: Passive Radar, TDoA, Camera / Accoustic

Step 1 Step 2

TDoA Likelihood Camera Likelihood

Step 3

Passive Radar 
Likelihood

Passive Radar 
Likelihood
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ASPECTS OF 
MILITARY DIGITALIZATION 
FOR AIRBORNE ISR
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What are Artificial Intelligence and Technical Autonomy?
A set of mathematical techniques for assisting perception and action
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From the perspective of “Cognitive ISR Applications”, techniques can be split up:

Action

Resource Management

Perception

Data Fusion

Intelligence

Knowledge and Learning

“Artificial Intelligence” and “Technical Autonomy”
Our Perspective of Digitalization
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Action

Resource Management

Perception

Sensor Data Fusion

Basis for decision making

Basis for data collection

Intelligence

Knowledge and Learning

Artificial Intelligence and Technical Autonomy
Our Perspective of Digitalization
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Action

Resource Management

Perception

Sensor Data Fusion

Supports with

underlying models

Supports with

underlying models

Intelligence

Knowledge and Learning

Artificial Intelligence and Technical Autonomy
Our Perspective of Digitalization
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Artificial Intelligence and Technical Autonomy
Application Areas

Motivation:

 Full exploitation of capabilities

 Reduced operator workload

 Robust performance in varied 

environments

 Multi-role system

Motivation:

 Changing signal environment

 Agile, unknown signals

 Reduced operator workload

 Robust performance

Adaptive/Cognitive 

Sensors
Cognitive EW, e.g.

Sensor Data Fusion (Perception)

 Advanced fusion, interpretation and reasoning of sensor data

Resources Management (Action)

 Effective management of sensor configurations and resources

Learning and Knowledge (Intelligence)

 Understanding of the underlying processes in the environment

Artificial

Intelligence
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PERCEPTION
Advanced fusion, interpretation and reasoning of sensor data:
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In Complex Environments

Multi-Target Tracking

Sea Clutter Dataset
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Complex environments comprise:

 Multiple interacting objects of 

interest

 Environment full of similar clutter 

objects

(not of interest – but provides 

context!)

In Complex Environments

Multi-Target Tracking

Necessary:

 Track multiple objects

 Understand/track the clutter 

environment

Sea Clutter Dataset
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Passive Coherent Location: Digitalization-enabled Sensor

PCL using mobile communication signals (GSM, LTE, EAN)

 Base Transceiver Station for illumination

 Localization and tracking of air / sea targets

 A sensor open of cognitivity (Simon Haykin)

37
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EAN – European Aviation Network
PCL using mobile communication signals

 Hybrid network to provide high-speed in-flight connectivity to aircrafts (S-band)

 LTE-type transmission (ground2air)

 292 Complementary Ground Components (CGC)¹

across 30 European countries

 Inmarsat S-Band Satellite network in supply gaps

 Providers:

 Deutsche Telekom

 Inmarsat

 Nokia

 Launched in spring 2018

Exploitation as PCL illuminator

R. Nafziger, et al. European Aviation Network, Online Press Conference, 5th Feb. 2018

39
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EAN – European Aviation Network

Ground Station Sites

40

Source: Deutsche Telekomapprox. 300 EAN/LTE ground located 

base stations
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What about airborne

multistatic radar?
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Multisensor Fusion
EMS and EO Fusion

Aim:

Track and localize multiple 

radio emitters.

Sensors:

 Antenna Arrays

 Cameras (EO/IR)
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ACTION
Effective management of sensor configurations and resources:
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Multifunction RF Systems (MFRFS)
Resources Management

© Hensoldt



© Fraunhofer FKIE 

MFRFS Resource Management
Quality-of-Service

 Requirement on track 

accuracy for weapon 

systems

 Self-protection

 Quality of the situation 

picture

 Self-protection

Target Engagement Wide Area Surveillance
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MFRFS Resource Management
Quality-of-Service

Required

Qualities

QoS Optimisation

Control

Parameters

 Requirement on track 

accuracy for weapon 

systems

 Self-protection

 Quality of the situation 

picture

 Self-protection

Target Engagement Wide Area Surveillance
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Concept

Partially Observable Markov Decision Processes

Key features:

 Action is selected based on reward from a long future time horizon

 Action is selected online, based on all current knowledge

 Basis for reinforcement learning
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Anticipative Control
With POMDPs

Trajectory Optimisation:

Sequential Decision 

Making Process

 Online decisions, based on all available 

information and knowledge

 Decisions met based on possible          

future events

 Direct consideration of uncertainty
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LEARNING
Understanding of the underlying processes in the environment:
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Standard models for object dynamics use 

general Markov models

However, actual target behaviours:

 Exhibit long-term dependencies

 Repeat previously observed patterns

Complex Targets

Behaviour Learning

X [m]

Y
 [

m
]

 

 

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ground Truth

Track

Radar Measurements

Port

Coastline

Radar Position

[3000,0]

Sea Lanes

Start position



© Fraunhofer FKIE 

Long Short-Term Memory Neural Networks

Learning Signal Sequences

Source: C. Olah, “Understanding LSTM Networks”, Blog Post, August 2015,  https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goal: Behaviour model of radar emitters

Applications:

 Deinterleaving, signal identification

 Emitter tracking and jamming

 Threat analysis

Approach:

 Hierarchical modelling

 LSTM networks

Long Short-Term Memory:

 Variant of recurrent neural networks

 Special structure for handling long-term 

dependencies

 Prediction of next value possible
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SUMMARY
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Challenges
Cognitive ISR Applications

Challenges

Learning
 Does the learnt knowledge fit             

to the current environment

 When, where is learning possible?

 Is it certifiable? Military decisions?

Trust
 Can an operator trust the decisions? 

 Possible impact on training process

 Much better man-machine-interfaces

Reliability and Robustness
 Are the external data sources 

available and uncompromised?

 Is my learnt knowledge complete?

 There is possibly „Cognitive Loss“

Vulnerability
 New EA possibilities against cognitive 

ISR systems?

 How can a cognitive ISR systems be 

protected?
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