

Foresight Power Trading

Machine Learning based forecasting for renewable energy trading

June 2023

Quick question

How much balancing costs can you save per month per 10 MW installed power with a solid forecast?

4cast – *heartbeat of renewables* Financial balance for the energy transition

> THE PRECISE LOOK INTO THE FUTURE – RENEWABLES BECOME CALCULABLE.

Why forecasting RES for the energy market Use your assets right

- \rightarrow Weather driven energy generation
- \rightarrow Uncertainty in yields with RES
- \rightarrow Volatility of energy prices
- \rightarrow Balancing costs
- \rightarrow Need for short-term trading decisions

Generating Forecasts

Data flow chart

Power yield forecasting for wind and solar power

For various time horizons

- → IntraDay
- → Day-Ahead
- → Long-term
 - predictions

Importance of Data for Forecasting Quality More Data – More Possibilities

The Models

Physical Model Machine Learning Model Deep Learning Model

Physical Model Based on mere physics

- \rightarrow Simulating energy yield via physical laws
- \rightarrow Realistic approximations
- \rightarrow Experimental parameters

Machine Learning

Maps input to output

- \rightarrow No Physics but Statistics
- ightarrow Understanding Patterns in Data
- ightarrow Training relationship without memorizing
- \rightarrow Model predicts future based on learned past
- ightarrow Vulnerable to changes in the real world

Deep Learning Artificial Neural Networks

- ightarrow Originally subcategory of Machine Learning
- → Stems from deep hidden layers in artificial neural networks
- ightarrow Increase in computation power and data
- \rightarrow Powerful models (GPT, BERT, etc.)
- ightarrow Able to understand temporal relationships
- → Data hungry

Evaluation metrics

Understanding forecast quality

$$MAE = \frac{\sum_{t}^{n} |forecast_{t} - power_{t}|}{n}$$

Skill Score = 1 - $\frac{MAE_{forecast}}{MAE_{reference}}$

Result Solar Predictions Skill Score, Financial Benefits

Balancing Costs in Germany* ~130 €/MWh

Installed Power: 1.7 MW

Financial Benefits

→ Machine Learning
 → 450 €/Month

 → Deep Learning

 → 910 €/Month

* 15min balancing energy price taken from www.smard.de

Result Wind Predictions Skill Score, Financial Benefits

Balancing Costs in Germany* ~130 €/MWh

Installed Power: 10.2 MW

Financial Benefits

→ Machine Learning
 → 9,050 €/Month

→ Deep Learning → 14,050 €/Month

* 15min balancing energy price taken from www.smard.de

Weather Report

Deep Learning Prediction

Thank you and meet us at our stand!

Let's connect on LinkedIn

Dr. Leon Droenner leon.droenner@4-cast.de **4cast GmbH & Co. KG** Friedrich-Ebert-Str 8 14467 Potsdam hello@4-cast.de

Backup

Example daily forecast – Germany

The described solar plant is located in Germany. We use in-house machine learning algorithms for this model. With an excellent database, we deliver very precise results.

The forecasts for this plant are delivered

- → every 15 minutes
- ightarrow for 8 hours ahead and the forecasts themselves have a
- \rightarrow time resolution of 15 min.

10 Weekly error Monthly error . 8 NMAE [%] 6 4 2 2022-05 2022-09 2022-06 2022-07 2022-08 2022-20 2022-11 2022-12 2023-01 Datetime

Monthly Evaluation

The normalized mean absolute error (NMAE) is used for the monthly and weekly evaluation:

nmae = Σ| forecast – power | Nominal Power

Error Evaluation

The greater the time lag of the forecasts the greater is the error, which is shown in the figure.

Typical intraday forecasts are made for the next 15 minutes.

