

VALIDATION AND VERIFICATION OF AN ANALYTICAL METHOD TO IDENTIFY AND QUANTIFY SELECTED AMPHETAMINE-RELATED DRUGS IN WHOLE BLOOD

AHMAD ALAMIR

Validated Analytical Method by MMSPE

2

3

Matrix Effects Evaluation

Recovery & Carryover Evaluations

Calibration Evaluation

3th PART

Autosampler Stability Evaluation

Conclusion and Future Work

0

2

4th PART

Future Work

8

Conclusion

Validation & Verification of an Analytical Method for ARDs

What are ARDs?

CH₃

Amphetamine Nominal Mass: 135 Da

Amphetamine related-drugs (ARDs) is a class of compounds compose of a phenyl ring connected to amine group through a two carbon side chain bearing a methyl group CH₃

Ephedrine Nominal Mass: 165 Da

Norephedrine Nominal Mass: 151Da **β-methylphenethylamine** Nominal Mass: 135 Da

10

CH₃

NH₂

Pseudoephedrine Nominal Mass: 165 Da

Cathine Nominal Mass: 151Da

Figure 1: Analytes' Chemical Structure

Analytes

Table 1: Amphetamine-related Drugs

No	Analyte	Pharmacological Action	Metabolites	Occurrence	Chemical Structure
1	Norephedrine (NEPH)	Sympathomimetic Amine	4-Hydroxynorephedrine	Genius Ephedra	OH (R) NH ₂ (S) CH ₃
2	Cathine (CAT)	Sympathomimetic Amine	4-Hydroxycathine	Genius Ephedra Catha Edulis	OH (S) (S) (S) (S) (S) (S) (CH ₃
3	Ephedrine (EPH)	Sympathomimetic Amine ά and β-adrenergic receptors agonist	Norephedrine	Genius Ephedra	CH ₃ CH ₃

1-Baselt, R. (2004) Disposition of toxic drugs and chemicals in man. Biomedical publicationsl, Foster City, California.

Analytes 12 cont'd No Analyte **Pharmacological Action Metabolites Chemical Structure** Occurrence OH Sympathomimetic Amine **Pseudoephedrine** (R) $\dot{\alpha}$ and β -adrenergic receptors Cathine Genius Ephedra CH₃ CH₃ (PEPH) agonist Sympathomimetic Amine 4-Hydroxynorephedrine NH₂ Amphetamine **Dopamine releasing Agent** 4-Hydroxyamphetamine *Synthetic* **Dopamine Receptor Agonist** (AMP) Norephedrine ĊH₃ inhibit DA reuptake CH3 Sympathomimetic Amine **4-Hydroxy**β–methylphenethylamine* NH₂ **Dopamine releasing Agent** β–methylphenethylamine 1-amino-2-phenylpropane-2-ol* *Synthetic* **Dopamine Receptor Agonist** (BMP) 4-(1-amino-2-hydroxypropan-2-yl) inhibit DA reuptake phenol*

1-Baselt, R. (2004) Disposition of toxic drugs and chemicals in man. Biomedical publicationsl, Foster City, California.

5

6

Why These Drugs?

- Amphetamine is one of the most commonly abused drugs in Saudi Arabia in the form of Captagon pills.
- □ Captagon is a market name for fenethylline which is a conjugate of amphetamine and theophylline
- Roughly one billion Captagon tablets have been sized by Saudi Anti-Drug Enforcement Agency in the last 8 years.
- □ Khat (Qatt) is a flowering plant that is chewed for its stimulant effect. Khat contains cathinone, cathine and norephedrine.
- □ Khat is the most commonly abused plant in my town "Jazan" for its euphoria effect.

2. http://www.arabnews.com/node/979806/saudi-arabia

13

MMSPE

MMSPE Sample Extraction

Figure 4: Schematic diagram of the extraction process of the analytes by using MMSPE

20

□ Ultra Performance Liquid Chromatography (UPLC) with a binary mobile phase system equipped with HSS T3 column (2.1 mm x 100 mm, 1.8 um)

□ UPLC was run as pseudo-isocratic for 9 minutes (5 mM ammonium formmate, 0.1 formic acid in 100 to 95:5 water:acetonitrile) for baseline resolution of the analytes

Figure 6: UPLC –qTOF MS Adopted from http://www.waters.com

Chromatograms

Figure 7: Total ion chromatogram of ARDs by optimized pseudo-isocratic elution

Time of Flight Mass Analyzer

□ Mass Spectrometry was performed by Quadrupole Time of Flight Mass (qTOF MS) using positive electrospray ionization and MS^E acquisition mode.

□ MS^E Is an acquisition mode in q-TOF MS that allows for acquisition of two accurate full mass spectra sequentially.

Figure 6: UPLC –qTOF MS

9. T.G. Rosano, M. Wood, K. Ihenetu, T.A. Swift, Drug screening in medical examiner casework by high-resolution mass Spectrometry (UPLC-MSE-TOF), Journal of Analytical Toxicology. 37 (2013) 580–593. doi:10.1093/jat/bkt071

Time of Flight Mass Analyzer

□ The first mass spectrum is acquired without applying collision energy (LE) in the collision cell.

 This spectrum provides information about the intact molecule (the molecular ion)

□ The second spectrum is acquired by applying collision energy (HE) in the collision cell.

This spectrum provides information about the fragmented ions

Figure 6: UPLC –qTOF MS Adopted from http://www.waters.com

Mass Spectra

Figure 8: Mass spectra for the 136.11 m/z molecular ions of (A) amphetamine and (B) β-methylphenethylamine at low collision energy

Mass Spectra

Figure 9: Mass spectra for the 136.11 m/z molecular ions of (A) amphetamine and (B) β-methylphenethylamine at high collision

energy

Validated Analytical Method by MMSPE

Analytes Parameters

Table 7: Analyte Parameters under Optimized MMSPE and UPLC-qTOF-MS

No	Compound	Ionisation Mode	Chemical Formula	Molecular Ion (m/z)	Fragmented Ions (m/z) (±0.01 mD)	Retention Time (min) (± 0.05 min)
1	Amphetamine-	Positive		147.1938	98.1078* / 130.1653	8.76
2	Ephedrine-	Positive		169.1568	136.1195 / 151.1433*	7.30
3	Norephedrine	Positive		152.1180	115.0736 / 117.0736 / 134.0975*	5.21
4	Cathine	Positive		152.1180	115.0736 / 117.0736 / 134.0975*	5.90
5	Ephedrine	Positive		166.1378	115.0556 / 117.0713 / 148.1140*	7.31
6	Pseudoephedrine	Positive		166.1378	115.0556 / 117.0713 / 148.1140*	8.00
7	Amphetamine	Positive		136.1219	91.0553 / 119.0868*	9.05
8	β–methylphenethylamine	Positive		136.1219	91.0553 / 119.0868*	9.58

***Quantifier ions**

Matrix Interference Results

Table 8: Evaluation of matrix interferences in five drug-free whole blood matrices after extraction.

Number	Whole Blood Matrix	Result		
1	Bovine	No interference		
2	Sheep	No interference		
3	Human Sample 1	No interference		
4	Human Sample 2	No interference		
5	Human Sample 3	No interference		

Matrix Effect Evaluation

Table 9: Evaluation of matrix effects in five drug-free whole blood matrices after extraction

55

Number	Whole Blood Matrix	Result		
1	Bovine	< ±25%		
2	Sheep	< ±25%		
3	Human Sample 1	< ±25%		
4	Human Sample 2	$< \pm 25\%$		
5	Human Sample 3	< ±25%		

ng/mL

Figure 22: Matrix effects (%) measured in extracts of aged bovine whole blood spiked with amphetamine-related drugs, including two deuterated analogues, at three different concentration levels (20, 500 and 1000 ng/mL). The data shown represent the mean of triplicate analysis, error bars represent the standard error of the mean, and red lines represent acceptable limits of matrix effects.

Recovery Results

Table 10: Evaluation of recovery (%) of amphetamine-related drugs and deuterated analogues from aged bovine whole blood

Analyte	Low 20 ng/mL	% CV	Medium 500 ng/mL	% CV	High 1000 ng/mL	% CV
Amphetamine-d ₁₁	70 ± 3	4.29	70 ± 1	1.43	71 ± 2	2.82
Ephedrine $-d_3$	77 ± 4	5.19	77 ± 1	1.30	77 ± 4	5.19
Norephedrine	71 ± 3	4.23	72 ± 2	2.78	76 ± 1	1.32
Cathine	68 ± 3	4.41	71 ± 2	2.82	77 ± 1	1.30
Ephedrine	71 ± 4	5.63	75 ± 1	1.33	77 ± 7	9.09
Pseudoephedrine	68 ± 3	4.41	75 ± 4	5.33	90 ± 5	5.56
Amphetamine	70 ± 3	4.29	80 ± 1	1.25	80 ± 2	2.50
β-methylphenethylamine	$e 65 \pm 4$	6.15	73 ± 1	1.37	75 ± 1	1.33

58

Figure 23: Recovery (%) of amphetamine-related drugs, including two deuterated analogues at three different concentrations from extract of spiked aged bovine whole blood. The data represent the mean of triplicate analysis, and error bars represent the standard error of the mean.

Carryover Evaluation

1000 ng/ml

Drug-free

59

Pretreated Samples

Extraction

Reconstitution **Evaporation**

Analyzing

Carryover was evaluated by analysis of three drug-free aged animal WB extracts directly after analyzing the high concentration calibrator (1,000 ng/mL, n = 3) samples

□ No carryover was observed upon visual inspection of the chromatograms and after the analysis of EICs.

Calibration Model Experiments

Pretreated Samples

Extraction

Evaporation

Reconstitution

Analyzing

Figure 24: Averaged quadratic calibration curve of NEPH and CAT

Figure 25: Averaged quadratic calibration curve of EPH and PEPH

 $R^{2} = 1$

1200

RESPONSE RATIO

0 200 400 600 800 1000 CONCENTRATION (ng/mL)

Figure 26: Averaged quadratic calibration curve of AMP and BMP

62

Table 11: Averaged curve regression equations and correlation coefficients of the analytes in aged bovine whole blood

Analyte	Linearity ng/mL	Regression Equation R					
Norephedrine	20 - 1000	$y = 8 x 10^{-9} C^2 + 0.0002 C - 0.002$	0.9998				
Cathine	20 - 1000	$y = 6 x 10^{-9} C^2 + 0.0003 C - 0.0039$	0.9994				
Ephedrine	20 - 1000	$y = -2 x 10^{-7} C^2 + 0.0018 C - 0.0198$	0.9994				
Pseudoephedrine	20 - 1000	$y = -8 x 10^{-7} C^2 + 0.003 C - 0.0219$	0.9998				
Amphetamine	20 - 1000	$y = -1 x 10^{-7} C^2 + 0.0006 C + 0.00004$	0.9999				
β-methylphenethylamine	20 - 1000	$y = -1 x 10^{-7} C^2 + 0.0005 C - 0.0013$	1				

Drug	Limit of detection (LOD, ng/mL)	Limit of quantitation (LOQ, ng/mL)	Within-Run Precision (CV, %) (acceptance criteria: ≤20%) [# failed]	Between-Run Precision (CV, %) (acceptance criteria: ≤20%) [# failed]	Bias (%) (acceptance criteria:≤20%) [# failed]
Norephedrine	20	20	1.17–18.10 [0/90]	15.86–18.99 [0/30]	-4.72-18.25 [0/10]
Cathine	20	20	1.60–13.20 [0/90]	16.2–18.98 [0/30]	-5.00-15.00 [0/10]
Ephedrine	20	20	1.00–11.54 [0/90]	5.31–9.81 [0/30]	-6.90-8.40 [0/10]
Pseudoephedrine	20	20	1.06–12.01 [0/90]	3.50–9.38 [0/30]	-10.82-7.16 [0/10]
Amphetamine	20	20	1.00–18.3 [0/90]	7.95–19.70 [0/30]	-7.98-3.40 [0/10]
β-methylphenethylamine	e 20	20	1.50–15.78 [0/90]	6.60–18.95 [0/30]	-11.00-9.00 [0/10]

 Table 12: Summary of Analytical Performance Parameters

Autosampler Stability Evaluation

Analyzing at zero hrs

65

Analyzing at 12 hrs

Analyzing at 24 hrs

Analyzing at 36 hrs

500 ng/ml

1000 ng/ml

Pretreated Samples

Extraction

Evaporation

Reconstitution

Table 13: Analyte stability data for amphetamine-related drugs at three different concentrations while resident on autosampler (10 °C) over 36 h.

Drug	40 ng/mL		50	500 ng/mL			1000 ng/mL			
	12 hours	24 hours	36 hours	12 hours	24 hours	36 hours	12 hours	24 hours	36 hours	
Norephedrine	5.32	5.32	5.32	1.62	1.35	1.83	2.63	2.63	2.38	
Cathine	5.42	1.76	2.34	2.6	4.62	2.22	2.39	1.29	1.16	
Ephedrine	2.24	2.37	6.04	1.39	1.07	1.12	1.36	3.35	3.48	
Pseudoephedrine	1.56	2.57	2.94	0.57	0.98	1.2	4.22	7.26	7.77	
Amphetamine	0.32	0.32	0.32	2.98	2.62	5.45	1.51	3.24	4.17	
B-methylphenethylamine	0.30	0.18	0.92	2.81	2.77	5.89	2.46	4.2	4.81	

(CV, %) (acceptance criteria: $\leq 20\%$)

Conclusion

EPHEDRINE INTERFERENCE OF THE MIPs

VALIDATION

VERIFICATION AND METABOLITES STUDY

POSTER PRESENTATION IN THE IAFS 2017 CONFERENCE The abstract of the study was published in Forensic Science International, Volume 277, Supplement 1, p. 230

An analytical method to identify and quantify selected amphetamine-related drugs in whole blood

Determination of BMP and one of its metabolite

