WATERPOWER H Y D R O B A S I C S

JULY 15-16, 2024

COLORADO CONVENTION CENTER DENVER, COLORADO

CO-LOCATED WITH

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Waterpower Hydro Basics Harnessing the Water

Donald (Don) Montgomery, PE Senior Principal Engineer Stantec

donald.montgomery@stantec.com Office: (303) 291-2169

Structure Definitions

- Water Retaining Structures
 - -Dams, Spillways, Intakes, Powerhouses, Locks

15-16, 2024

Water Conveyance Structures

JULY

- Penstocks, tunnels, flumes, canals & ditches
- Forebays, balancing reservoirs
- Water Regulating Structures
 - Upstream gates, valves, bulkheads, stoplogs, operators
 - Downstream turbine isolation valves, bypass valves

COLORADO CONVENTION CENTER

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Water Retaining Structures

Dams

- Gravity
- Fill/Embankment
- Structural

Spillways

- Uncontrolled
- Controlled

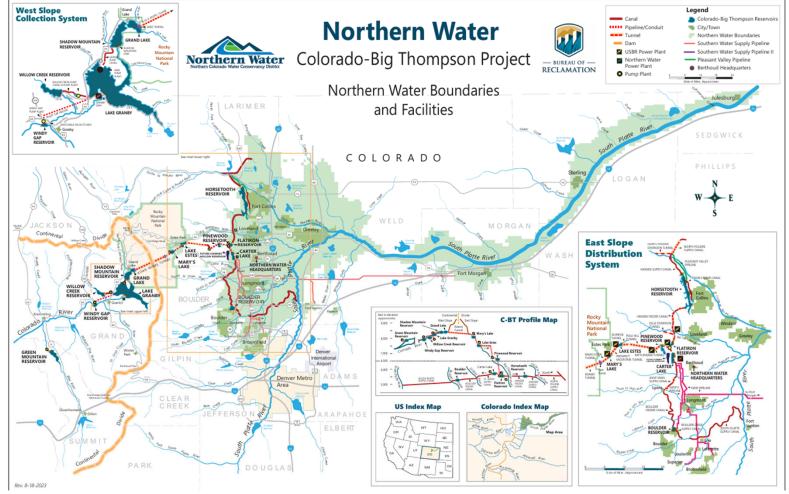
Design Considerations

Water Retaining Structures - Dams

JULY

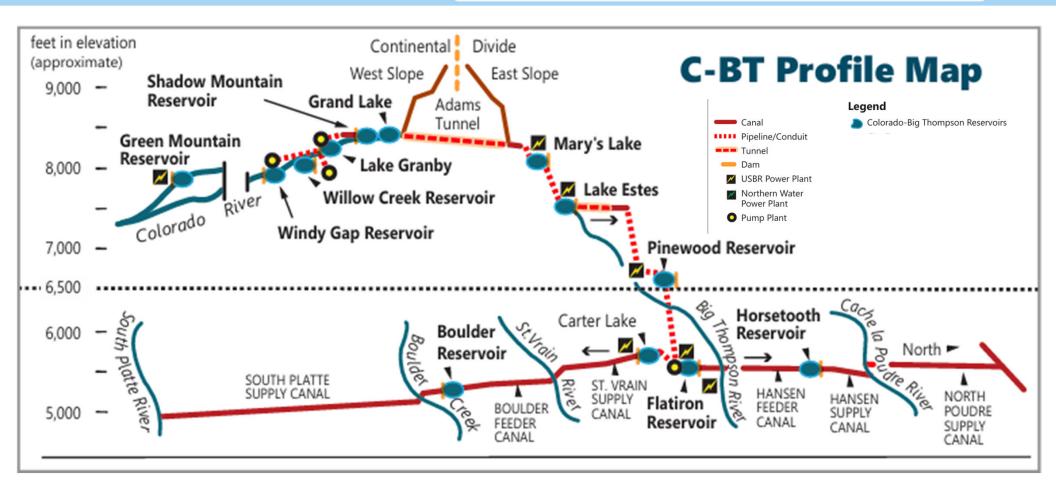
Gravity Structures

15-16, 2024


- Rely on mass
- Concrete, RCC, masonry
- Fill/Embankment Dams
 - Rely on frictional resistance of materials and mass
 - Earthfill, rockfill, hydraulic fill, levees

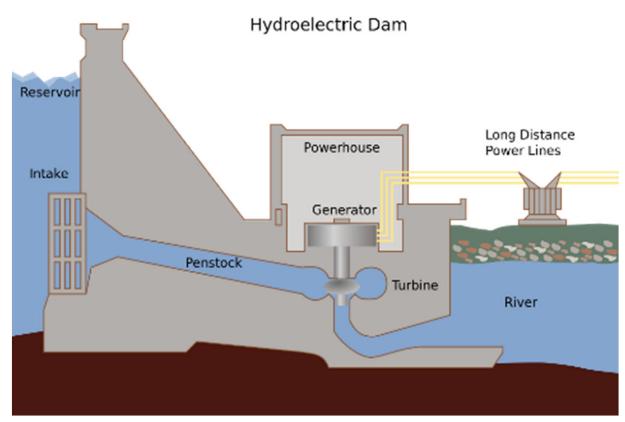
COLORADO CONVENTION CENTER

- Structural
 - Rely on their structural configuration
 - Arch dams, buttress, flood walls



JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

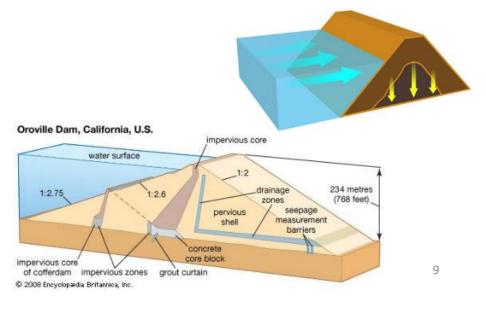
JULY 15-16, 2024


COLORADO CONVENTION CENTER DENVER, COLORADO

JULY 15-16, 2024 ^{COLORA} DENVER,

COLORADO CONVENTION CENTER DENVER, COLORADO

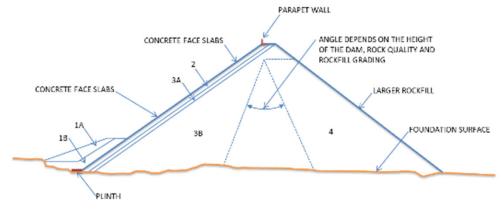
Gravity Structures


- Cast-in-place, roller compacted, precast, pre-placed aggregate and underwater placed concrete
- Masonry and cyclopean
- Powerhouses, intakes, spillway headworks, etc.
- Greater cross section but needs lower foundation strengths

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Earthfill Embankments

- Variety of material choices
 - Gravels, sands, silts, clay, manufactured products
- Homogeneous
 - 1 impervious material
- Zoned
 - Impervious core protected by filter, drain and shell materials
- Low foundation strength needed

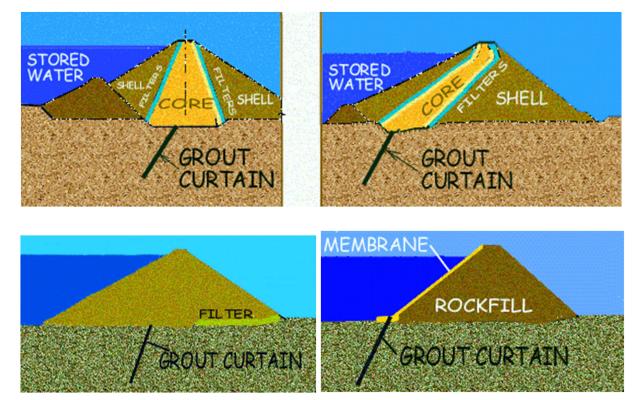

Rockfill Embankments

• Earth core: low permeability core and filter materials within dam body

15-16, 2024

JULY

- Hydraulic Asphalt Concrete core: impervious core and filter materials within dam body
- Upstream lined: concrete, asphalt, or membranes
- Steeper slopes \rightarrow higher foundation strength required


COLORADO CONVENTION CENTER

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Dam Cross Sections

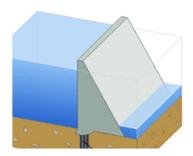
Central Core Embankment Dam

Sloping Core Embankment Dam

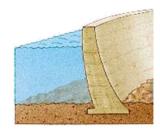
Homogeneous Embankment Dam Upstream Lined Embankment Dam

Illustrations from http://www.users.tpg.com.au/houlsby1/Dams%20Usage.htm

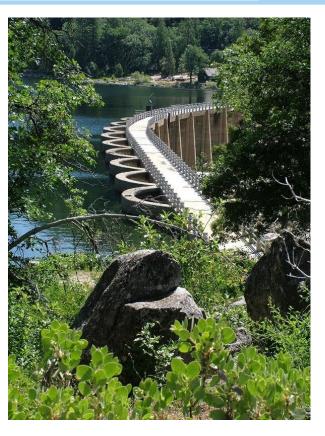
11


JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Structural Dams


- Arch Dams
 - Small cross sections
 - Require high foundation and abutment strengths
- Buttress Dams
- Coffer Dams
- Timber Crib
- Flood Walls

Illustrations from http://www.users.tpg.com.au/houlsby1/Dams%20Usage.htm


13

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Timber Crib Dam

Multi-Arch Dam

Spillways & Outlet Works

permit passage of excess reservoir water

Energy dissipation is extremely important!

Spillway Types

"Uncontrolled" Spillways

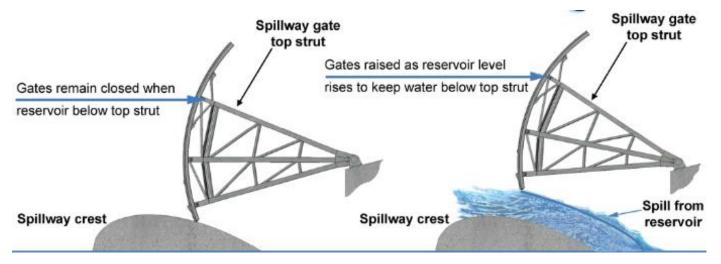
15-16, 2024

• Maintain water levels automatically without reliance on personnel or machines

JULY

• Ungated overflow weirs, side channel, labyrinth, drop inlet, fuse plugs

COLORADO CONVENTION CENTER


JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Spillway Types

"Controlled" Spillways

- Provide reservoir drawdown capability during or following a flood event
- Gated spillway, discharge outlet, stoplogs, flashboards, etc.

15-16, 2024

JULY

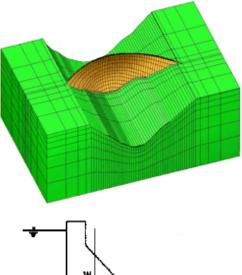
COLORADO CONVENTION CENTER DENVER, COLORADO

Design Considerations

Material

- Availability
- Thermal behavior

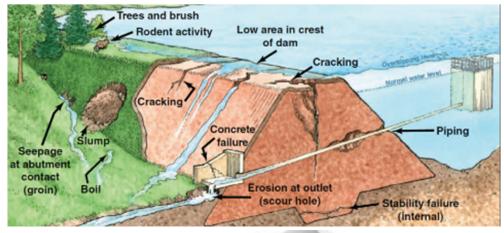
Foundation

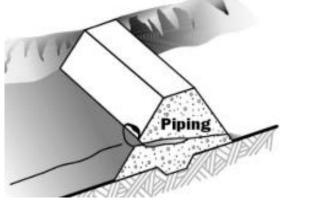

• Bearing, sliding, seepage, liquefaction, and settlement

Stability

- Sliding
- Overturning
- Slope stability
- Water barriers and drains

Strength


Performance



JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Design Considerations

- Seepage, leakage, and piping
- Settlement
- Material Deterioration
- Overtopping / Surface Erosion
- Seismic Resistance

WATERPOWER HYDROBASICS JULY 15-16, 2024 Colorado convention center denver, colorado

Design Considerations

- Hazard Potential Classification
 - Categorizes dams based on adverse incremental consequences of a failure or misoperation
 - Not an indication of the current or expected condition of the dam
 - Classification determines design criteria for the dam such as Inflow Design Flood (IDF), freeboard, spillway and outlet requirements, seismic resistance and analysis requirements, etc.

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Dam Downstream Hazard Potential Classifications

CATEGORY ¹	LOW	SIGNIFICANT	<u>HIGH</u>
Direct Loss of Life ²	None expected (due to rural location with no permanent structures for human habitation)	Uncertain (rural location with few residences and only transient or industrial development)	Certain (one or more extensive residential, commercial or industrial development)
Lifeline Losses ³	No disruption of services - repairs are cosmetic or rapidly repairable damage	Disruption of essential facilities and access	Disruption of critical facilities and access
Property Losses ⁴	Private agricultural lands, equipment and isolated buildings	Major public and private facilities	Extensive public and private facilities
Environmental Losses ⁵	Minimal incremental damage	Major mitigation required	Extensive mitigation cost or impossible to mitigate

Water Conveyance Structures

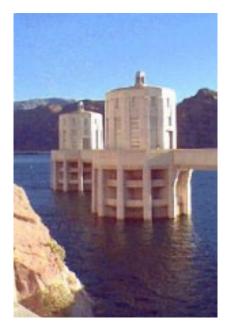
- Conveyance Components
- Design Considerations
 - Channels & Canals
 - Penstocks
 - Tunnels & Shafts
 - Outlet Works

Water Conveyance Structures

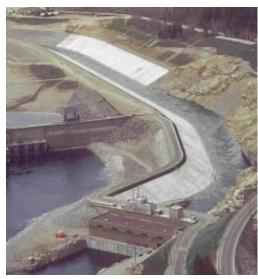
Goals

- Deliver the required flow to the turbines
- Minimize head loss
- Maximize power and/or energy output

All for the Least Cost.


Conveyance Components

• Channels & Canals: manmade streams or rivers


JULY

- Forebays: water storage for operation regulation
- Intakes: control inflow and block debris, fish, ice, etc. from entry

15-16, 2024

COLORADO CONVENTION CENTER

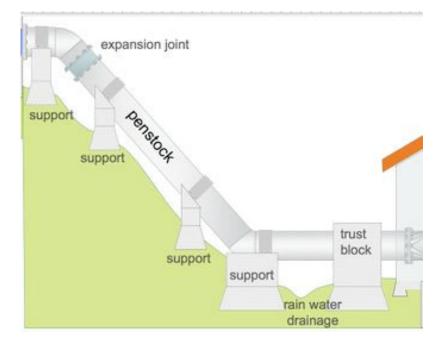
Conveyance Components

JULY

- Flumes: open conduit, normally elevated, for conveying water
- **Penstocks:** pipe to convey water under pressure
- Tunnels & Shafts
- Surge Chambers: for pressure fluctuations in water conductors

15-16, 2024

COLORADO CONVENTION CENTER



Conveyance Structure Design Considerations

JULY

15-16, 2024

- Alignment issues
- Hydraulic requirements
 - Flow, Velocity, Head
- Leakage and seepage control
- Dewatering and inspection provisions

COLORADO CONVENTION CENTER

Channels & Canals Design Considerations

• Unlined or lined (clay, concrete, membranes, asphalt, etc.)

JULY

• Generally larger volumes of water and slower velocities (losses, erosion, etc.)

15-16, 2024

- Unlined: 2 to 6 fps
- Lined with rock or riprap: up to 10 fps
- Lined with concrete: up to 20 fps
- Uniformity of cross section and alignment to minimize losses
- Uplift relief and drainage beneath the lining is an important consideration.

COLORADO CONVENTION CENTER

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Conveyance Structures Design Considerations

Penstocks & Tunnels

Internal pressure design: normal operations, transient conditions (surge), negative pressures

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Conveyance Structures Design Considerations

Penstocks & Tunnels External pressure design: ground loads, grouting, groundwater

System design:

supports, thrust blocks, expansion/contraction, coatings, access

Penstocks

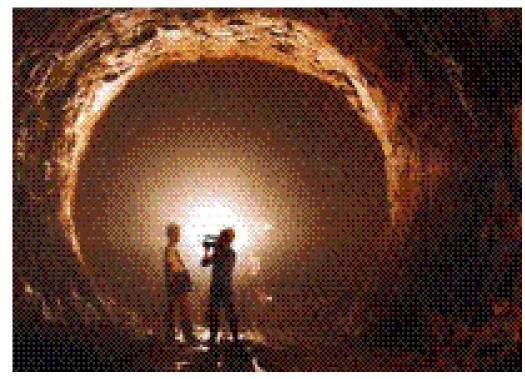
- Supported, buried or encased.
- Materials:
 - Steel, wood stave, concrete, and fiberglass.
 - Steel to be pressure vessel quality steel (refer to ASME guidelines and ASCE 79).
- Design must be done in conjunction with the turbines to ensure water supply is consistent with the machine

JULY

15-16, 2024

- Water starting time and mechanical starting time
- Design pressures due to water hammer

COLORADO CONVENTION CENTER

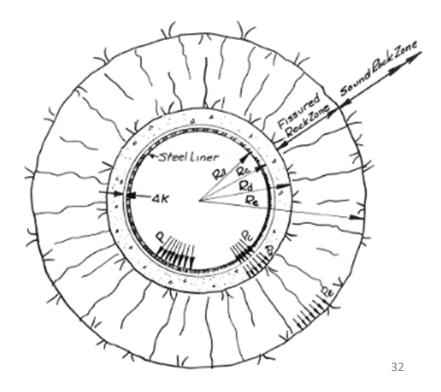

JULY 15-16, 2024

COLORADO CONVENTION CENTER DENVER, COLORADO

Tunnels and Shafts

Is a lining needed?

- Reduce losses
 - Unlined, velocity ~ 5 to 8 fps
 - Concrete lined, velocity ~ 10 to 20 fps
 - Steel lined, velocity ~ 20 to 30 fps (though upwards of 70 fps near the entrance to the units)
- Leakage / hydraulic jacking
- Support needs, both during construction and long-term operation.


Lining Design

Optimum design incorporates the steel liner, concrete lining, and rock zones

JULY

15-16, 2024

- Treat air gap between steel and concrete
- Minimum thicknesses
 - Handling for the steel liner
 - Constructability for concrete (min. 12", 18" to 24" for drill and blast)

COLORADO CONVENTION CENTER

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Outlet Works

- To allow the release of water to satisfy river flow requirements when the power plant is not in operation
- Temporary diversion during initial filling
- To allow for lowering of reservoir for inspection and repairs
- To provide additional spill capacity

Outlet Works

• Basic components include control structures, discharge channels, and terminal structures.

JULY

15-16, 2024

- Discharge channel or conveyance system is often times closed such as a pipe or conduit.
- Releases; i.e., size of outlet dictated by:
 - Flood control regulation / storage regulation
 - Water supply or irrigation demands
 - Navigation
 - Environmental
 - Drawdown

COLORADO CONVENTION CENTER

Outlet Works

- Reservoirs are subject to sedimentation
 - Leads to loss of storage volume for water supply, hydropower generation, flood storage, etc.

15-16, 2024

• Impacts pool depths that can affect navigation and recreation

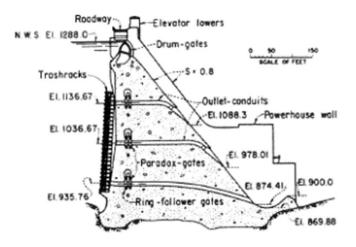
JULY

- Restricts flow of sediment downstream sometimes leading to scour downstream and prevents replenishment of downstream bottomlands
- Submergence important
- Trashracks may be needed

COLORADO CONVENTION CENTER

Outlet Works

- Water quality related issues may include:
 - Temperature
 - Oxygen concentration
 - Turbidity
 - Minimum flow requirements
- Water below the outlet works is considered "dead storage"


JULY

15-16, 2024

COLORADO CONVENTION CENTER

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Outlet Works

- Energy dissipation is extremely important
- Common velocities:
 - Concrete lined conduits = 65 fps
 - Steel lined conduits = 160 fps
- Air must be supplied downstream of the gate to prevent cavitation and damage to conduit due to high velocity flow

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

Water Regulating Structures

Gate vs Valve Gates

- Low Head
- High Head

Valves

Design Factors & Considerations

COLORADO CONVENTION CENTER DENVER, COLORADO

Water Regulating Structures

Regulate the flow

Provide needed flow range and accuracy

Installation, removal, and maintenance ease

All for the Least Cost.

JULY 15-16, 2024 COLORADO C DENVER, COL

COLORADO CONVENTION CENTER DENVER, COLORADO

Water Regulating Structures

<u>Gate</u>

Closure device in which a leaf (closure member) is moved across the fluidway from an external position

<u>Valve</u>

Closure device in which the closure member remains fixed axially with respect to the fluidway and is either rotated or moved longitudinally

Questions ?? Thank you all very much !!! Enjoy the rest of the course

JULY 15-16, 2024 COLORADO CONVENTION CENTER DENVER, COLORADO

References

- USACE Documents (<u>http://www.usace.army.mil/publications/</u>)
- USBR Documents -(<u>http://www.usbr.gov/library/</u>)
- EPRI Documents including (<u>http://www.epri.com</u>) Civil Engineering Guidelines for Planning and Designing Hydroelectric Developments
- "Davis' Handbook of Applied Hydraulics", 4th Ed., Zipparro & Hasen (eds.), McGraw Hill, 1993
- "Embankment Dam Engineering", Hirshfeld and Poulos (eds.), Wiley, New York, 1973
- "Advanced Dam Engineering for Design, Construction, and Rehabilitation", R.B. Janesen (ed.) Van Nostrand Reinhold, New York, 1988
- Embankment Dam Engineering, Casagrande (ed.), Wiley, New York, 1973
- Hydro-Electric Handbook", Creager & Justin, John Wiley and Sons, New York, NY, 2nd Edition, 1950
- "Improving Reliability of Spillway Gates", United States Society on Dams, Denver, CO. 2002

- "Water Resources Engineering," 2nd Edition, by Linsley and Franzini, published by McGraw-Hill Book Company, 1972.
- FERC Documents (<u>http://www.ferc.gov/industries/hydropower.asp</u>)
- ASCE Documents (<u>www.pubs.asce.org/</u>)
 - Guidelines for Life Extension and Upgrade of Civil Works for Hydroelectric Facilities
- FEMA Documents
 - Federal Guidelines for Dam Safety: Hazard Potential Classification Systems for Dams, FEMA 333
- "The Guide to Hydropower Mechanical Design Chapter 7", American Society of Mechanical Engineers, HCI Publications, Kansas City, MO, 1996
- "Hydraulic Gates and Valves", J. Lewin, Thomas Telford, London, 2001
- "Hydroelectric Power Plants Mechanical Design", United States Army Corps of Engineers [EM-1110-2-3105], 1999