WATERPOWER HYDRO BASICS

Session 5: Hydro in a Power System

Instructor

Steve Wenke Senior Manager - Mana Consulting Retired as Chief Engineer for Avista Corp

WATERPOWER HYDROBASICS

Session 5: Hydro in a Power System - Overview

- Power System Operation Basics
- Power System Controls
- Dispatch of Generating Sources
- Effects of Renewables on Power System Operations
- Capabilities of Generation Sources
- System Operations Planning
- River Operations
- Unique Capabilities of Hydro
- Impacts of Alternative Generation Sources

Frequency Control

Balancing Power Systems Frequency controlled by Real Power

Reactive Power

An analogous example can be a water system. With all the valves closed, it requires a certain amount of pressure to deliver a flow at the outlet of the system.

If you open a valve, the pressure will decrease in the system and you need to increase the source pressure to continue to deliver the pressure at the outlet.

Power System Operation Basics

- Electrical energy cannot be stored
 - The original "just in time" process!
- Real and Reactive power loads are always changing
 - But there are patterns for similar types of loads
- Generation must be equal to load for stable operation
 - Continuous adjustments are required for balance
 - Manual, by operators
 - Automatic, by control systems like AGC
- What happens if you don't always match source to loads?

Typical Load Curves

What will these curves look like when everyone comes home to charge their electric vehicle?

Day-ahead forecast Hour-ahead forecast Oemand

Power System Basics

Loads and Generation

Power moves from generator to load across the transmission grid

Transmission Congestion

- What might cause a transmission system to be congested?
- What happens if Transmission Constraints don't allow enough power to flow to loads?
- How do you know if the system becomes congested?

Power System Control

2 Basic Control Parameters

Frequency

Agreed upon value (60Hz in NA, 50Hz in EU)

Frequency Response at unit (governor action)

AGC Response (f_{error} term in ACE Equation)

Voltage

Set by Transmission Operator

Voltage Schedule

Reactive Power Schedule

Power System Control

Voltage

10

Balancing Power Systems Real Power Balance

BA Level Control (Balancing Authority)

Automatic Generation Control (AGC)

Area Control Error (ACE)

ACE is a function of:

Interchange Error and BA share of Frequency Error

Balancing Power Systems Voltage Controlled by Reactive Power

P (MW) 12

Balancing Power Systems Reactive Power Balance - Some Transmission Reactive

Interconnected System Operation

Benefits include

- Reserve sharing (Contingency, Frequency, Regulation)
- Diversity in transmission paths
- Sharing frequency error
- Access to wholesale energy markets
 - Economic Purchases or Sales

Disadvantages

- All systems "see" disturbances
- Other generation suppliers can sell to your customers

Makes Retail Power Markets possible

Customers have choices

Energy Interchange

- Excess generation can be sold to other entities, or
- Energy can be purchased from other suppliers
 - Neighboring (or distant) utilities
 - Power marketers
 - Independent generators

• Purchases are just another resource you use to meet your load demand.

National Electric Resource Mix

Source: U.S. Energy Information Administration, Short-Term Energy Outlook, June 2023

Generation Dispatching

Meet Real Time Load Demand at Minimum Cost

Generation Cost Curve

Generation Dispatch

Deep Dive into Load Curve

Time Increment is One Minute

New Additions to the Power System

February 2012 – 1 day

Wind Generation

INTERNATIONAL

February 2012 – 7 days

Wind Generation

CEATI HOR

Flexibility for Short-Term Uncertainty

Generation Dispatch

Impacts of Wind <u>and</u> Solar Penetration -Scenario

Other Considerations

Do you think a battery is a good thing or a problem thing?

Ancillary Services

- Non-energy services required to operate power system
- Six types as defined by FERC Order 888
 - Scheduling, system control, and dispatch
 - Reactive power supply and voltage control
 - Regulation and frequency response
 - Energy imbalance service
 - Spinning reserve service
 - Supplemental reserve service

Ancillary Services

		SYNCHRONOUS INTERCONNECTION					INVERTER-BASED INTERCONNECTION				DEMAND RESPONSE	
		Cool	Natural Gas Simple Cycle	Natural Gas Combined Cycle	Nuclear	Hydro	Grid Scale Wind	Grid Scale PV	Distributed PV	Distributed Battery Storage	Large (Industrial/ Commercial)	Small (Aggregate
Volt/Var Control									0	0		
Short Circuit Contribution								0	0			0
Frequency Control	Inertial Response							0	0		\bigcirc	0
	Primary Frequency Response (droop)						0	0		0	0	0
	Regulation						0	0	0		0	0
	Load Following/ Ramping						0	0	0		0	0
	Spinning Reserve							0	0			•
Short-term Availability (fuel)							D	0	0			
ong-term Availability (plant)								0	0	0		
slack Start		0			0				0			0
	Reliable syst Synchr	tem operation	on requires	online resou resources pr	rces aggre ovide the h	ightely cap high est cor d	ole of provid ibution acros	ing the full r is the broade	ange of requ est range of	vired reliabili reliability ser	ity services. vices.	

EPRI 2018 System Reliability Services

Plant Regulation

Voltage Support

230 kV Bus Voltage Maximum Limit

Another reliability benefit: Inertial Response Hydro turbines are massive and resist frequency change Turbo Units create inertia with their speed

Plan for Contingencies

- You must leave room for unexpected events
- Types of contingencies
 - unplanned Unit outages
 - Loss of "fuel" (wind)
 - Loss of transmission lines (when power sales or purchases are being transmitted)
- BA's Must have Reserve Generation (Operating Reserves) to reliably serve their load

What are some other contingencies that you might need to plan for?

Operating Reserves

- Increase generation INC Reserve
 - Spinning reserves (already on-line but loaded at less than full capacity)
 - Supplemental (must start and load up in 10 minutes)
- Short term purchases
 - Buy on spot market for replacement power
 - Reserve sharing with connected utilities
- Reduce loads (Demand Response)
 - Drop interruptible loads
 - Drop other loads
- Reduce Generation DEC Reserve
 - New problem introduced by wind and solar. If they unexpectedly come up something needs to back off to maintain a balanced system

Generation Reserves NERC Reliability Standards

- BAL 001 Control Performance Standard
 - How well does a BA maintain frequency, follow load, and minimize Area Control Error (ACE)
- BAL 002 Disturbance Control Standard
 - Must recover ACE within 15 minutes of a contingency event.
 - Must restore reserves before end of the Disturbance Recovery Period (60 – 105 min)
- BAL 003 Frequency Response Standard
 - How well does a BA respond to large frequency, frequency deviations.

Planning for Operations

- Fuel Supply
 - Thermals
 - Purchase your gas, coal oil, uranium
 - Consume in real time
 - Wind and Solar
 - Hope for windy sunny days
 - Wait until real time to see how it unfolds
 - Hydro
 - Use Historic Hydrology Records
 - Statistical Analysis
 - Hope for lots of rainy days and a little luck

Hydro plants have a Dynamic Fuel Supply

Upstream outflow = downstream inflow Lots of planning and coordination is required for reliable operations

Real Time Considerations

10 kcfs increase at LWG Generate or Store Today?? Sell ??? What about tomorrow?

Rule Curves

Rule Curves force operations for flood control

Unique Capabilities of Hydro

- Black start (start without off-site power)
 - Simple auxiliaries can be started by engine-generator set, or even batteries
- Energize dead lines
 - Salient pole rotor construction results in higher line charging limits
- Ride-through disturbances
 - Hydro turbine and generators relatively insensitive to frequency deviations

Unique Capabilities of Hydro

- Spinning Reserves
 - Capacity above current operating point due to max Efficiency below full capacity
- Regulation
 - Kaplans are best because of flat Efficiency curves
- Dec Reserve
 - Kaplans again are best
 - Short term storage utilized to prevent spill
- Inc Reserve

Efficient Hydro Operations = Operating Reserves

Impacts to Hydro Units Due to Integrating Alternative Sources

- Increase in start stop cycles can accelerate aging of generator
 - Cyclical loading and heating
- More frequent maintenance may be needed to minimize effects
 - Possibly more wear in wicket gates, bearings, actuators, other moving parts

Hydro's Role in the Future

- Continues to be very flexible resource in generation mix (provided there's water)
- Capable of marketable ancillary service and reserves support
- Expanded need for pumped-storage hydro to "store" or shift timing of output from alternative variable energy sources

The Shift in Fundamentals

- Traditionally, energy has been stored in the fuel (i.e. the coal pile, the gas pipeline, the reservoir)
- Traditionally, energy has been delivered "just in time"
 - If more energy was needed, we just added more fuel.
- Now with intermittent renewables, the energy being created is only available for consumption when it is created
 - This has increased the value of storage

What other factors might be different in the future?

CONCLUSIONS

- Hydro generation provides easily controllable and flexible source of real and reactive power
- Fast startup and ramp rates
- Low operating costs
- Few moving parts means greater reliability
- Proven technology and a renewable fuel
- Lots of uncertainty but still well suited to meet the anticipated needs of the future.