

Waterpower. S HYDRO BASICS COURSE	JULY 10-11, 2023 // Charlotte, North Carolina, USA	
Session 5: Hydro in a Power System		
Instructor		
Steve Wenke		
Senior Manager - Mana Consulting Recently Retired as Chief Engineer for Avista		
Co-located with: H		

•System frequency is continually changing, it is only 60Hz momentarily

 \bullet Governor dead band is typically set so governors are inactive within \pm 0.036Hz of 60Hz to prevent excessive operation or "hunting"

•Continual starting and stopping of loads, and to a lesser extent, of generation on and off the system results in varying frequency (speed)

A simple analogy for electricity and power system flow is water system flow. This is analogy is intended to provide the concept of reactive power. Voltage is the "pressure" that the system requires to deliver the Current the "flow" in an electrical sense.

If you have no valves open, you can easily control the flow that comes out the bottom. When another valve is opened, it effects how much flow comes out the bottom. You need to increase the pressure going in the system in order to keep the flow constant at the bottom.

This pressure increase in analogous to reactive power. Pressure needs to be adjusted constantly in order to keep the flow and pressure delivered at the end.

•Electrical energy cannot be stored in any meaningful amount using current practical technology

•Pumped storage plants allow electrical energy to be converted to another form (potential) for later conversion back to electrical

• Power generated must equal the power used plus losses to keep system frequency constant

•General trends for real and reactive power loads can be forecast based on historical data and forecast information.

•System loads can vary with time of day (lighting, working hours at businesses, etc.), day of week (factory closed on weekends), or month of year (ambient temperatures, weather, etc.)

- •Often one or two peaks a day
- •Peak can be two or three times minimum
- •Rate of change can be tens or hundreds of MW/minute on large systems

The utility needs to be prepared for unanticipated load changes and have a plan to meet them.
Should also plan maintenance outages around system peaks (and fuel/water availability) to minimize system operating costs

•If there are excursions because of inability to match loads, over or underfrequency events occur and burn up equipment, power supplies, etc. (over frequency – high voltage; underfrequency – high current)

- •MW load on system versus hour of the day
- •Winter Shape
 - •Two daily peaks
 - •Difference between minimum to maximum: ~ 1.7
 - Probably a moderate climate
 - •Ramp rates approaching 20MW/min in this example, sudden weather changes can result in faster ramp rates (to 100MW/minute and higher)
- •Summer Shape
 - •Typically, would peak in the evenings as people come home, start cooking and turn up AC
 - •If you are in an area with heavy irrigation pump load, this would be higher during daytime hours for peak

Ideally, we want the least expensive resource serving the load. If a thermal plant is cheaper than a nuclear plant, you would want to use the thermal plant. Grid problems sometimes make that impossible.

The transmission path for the thermal plant output to reach the load may limit the ability of the thermal plant to deliver the power. If that happens then part, or all, of the energy to serve the load needs to come from other sources.

Dispatch is discussed later but these transmission constraints can cause more expensive resources to run so energy can reach the loads.

There are multiple causes for transmission congestion. They can include transmission lines that are out for maintenance, storm or other weather damage, high heat that limits the amount of current a conductor can carry (line sag); inadequate planning; a line gets overloaded for some reason.

If power flow cannot be met, it can lead to "brown outs" (i.e. low voltage but still energized) or "black outs" or "rolling black outs"

Transmission Operators are responsible for managing the transmission system and identifying if there are constraints. The have the authority to adjust generation as they see the need in order to not "crash" the transmission grid.

Power System Control	
2 Basic Control Parameters	
Frequency	
Agreed upon value (60Hz in NA, 50Hz in EU)	
Frequency Response at unit (governor action)	
AGC Response (f _{error} term in ACE Equation)	
Voltage	
Set by Transmission Operator	
Voltage Schedule	
Reactive Power Schedule	
	10

Bad things can happen if V or F drift too far from scheduled values.

Governors and AGC control Frequency. Automatic Voltage Regulators help with voltage control. Out on Grid there are Capacitor and Reactor Banks for V control.

•Electrical energy cannot be stored in any meaningful amount using current practical technology

•Pumped storage plants allow electrical energy to be converted to another form (potential) for later conversion back to electrical

• Power generated must equal the power used plus losses to keep system frequency constant

•General trends for real and reactive power loads can be forecast based on historical data and forecast information.

•System loads can vary with time of day (lighting, working hours at businesses, etc.), day of week (factory closed on weekends), or month of year (ambient temperatures, weather, etc.)

- •Often one or two peaks a day
- •Peak can be two or three times minimum
- •Rate of change can be tens or hundreds of MW/minute on large systems

•The utility needs to be prepared for unanticipated load changes and have a plan to meet them.

•Should also plan maintenance outages around system peaks (and fuel/water availability) to minimize system operating costs

- •Frequency and Voltage change constantly
- •Automatic Systems are needed to balance the system in real time.
- •Real and Reactive Power are needed for this balance

•System frequency is continually changing, it is only 60Hz momentarily

 \bullet Governor dead band is typically set so governors are inactive within \pm 0.036Hz of 60Hz to prevent excessive operation or "hunting"

•Continual starting and stopping of loads, and to a lesser extent, of generation on and off the system results in varying frequency (speed)

•Error is Actual minus Schedule

•Area Control Error (ACE) is a calculation done by computers using telemetry from interchange points that measure all the power coming into a system against the power being produced by a system. The difference is the error. The computer than produces a signal that goes out to generators to adjust their output up or down to match the error and return everything to "zero". This signal is call the Area Generation Control (AGC). This read and adjust cycle is generally done every four seconds.

•(the reality of this that things still change within the four second cycle time so the system never really sits at zero)

Real and Reactive Power capability. This shows how much a reactive energy can be provided by a generator. What is important is that the reactive power (Q) is dynamic and is capable of adjusting automatically depending on what the system demands. X axis is Real Power in MW

Y Axis is Reactive Power in MVAR (Volt Amps Reactive) Resultant is Apparent Power in MVA (Volt Amps)

Balancing Power Systems Reactive Power Balance - Some Transmission Reactive

There are transmission elements that can help control voltage. This is not a metered thing, so it does have allowed fluctuations.

Far Left: A synchronous condenser (this is a cutaway, the actual device is fully covered and not exposed like this.)

Center: A reactor bank

Upper Right: A capacitor Bank

Lower Right: A Static Var Compensator. This is a combination of smaller switched capacitor and reactor banks.

•NERC Functional Model BA = Balancing Authority – function: Balance supply and demand.

- •Generators have governors and AVR and are also tied into the BA Area Generation
- •Operation in parallel with neighboring systems allows planned and unplanned energy exchanges
 - •Can lower overall cost to provide energy to loads
 - •Reserve sharing
 - •Facilitates sales and purchases between systems
 - •Provides some protection against transmission path interruptions
 - •But all share in the impacts of an unplanned unit trip
 - •Good if you lost the unit
 - •Bad if you are located in the next system over

•Interconnected systems can set up power markets in which firm or interruptible power and energy can be bought or sold for the next hours, day, week, or longer

• Markets can contain conventional utilities, independent generation plants (merchant power – constructed to sell power to no one in particular)

• Markets pricing structures (determining how who gets paid for what power) can have dramatic impacts on daily generation mix, service reliability, and even plant siting

• Markets can greatly complicate the generation dispatchers job

•Area load is internal generation less sales plus imports

•In many cases one utility may have extra generation available for a limited time and wish to sell the output to another utility. This could be because utility A started a large unit for the morning peak and wants to leave it on for the afternoon peak, but has no need for it during the mid-day lull.

•Purchased generation is treated like internal generation

•Sold generation is treated like a normal load

You can see the declining output from Coal fired units and the increase in contribution with renewables

Of note is that currently Natural Gas fired generation is the dominant source of power in the US

Generator Dispatching – this is an economic decision in most cases. To determine the economics, there are several factors that contribute to the cost. This cost is divided by the MWh's produced and is use to determine the cost for generation. The lower the cost per MWh, the more economic the choice.

Th\\

Sometimes this is referred to as the "stack" graph because it stacks up generating resources based on their cost.

Again, it is based on variable cost which changes each day based on the changing components of cost (e.g. gas).

You see there is a diverse mix of generation types – Starting with Hydro which is at a very low cost since the fuel is \$0 but it is a limited resource. There are the Nuclear units which are also at very low variable cost. Then, Coal units and finally Combined Cycle units and Combustion Turbines.

So to give you a simplistic view of how a system is committed and dispatched – Assume every unit available, assume peak hour and hydro is operating and say there is a 47,500 MW demand. CT's are the required resources here at a cost of about \$100. But, if energy can be bought from the Market at something less than that, then the cost to generate would be reduced relative to the Stack.

That's a high level look at how the electric system is operated both day ahead and intra day.

Obviously, dispatching on economics and with resources having varying cost types drives their operation to be weighted heavily toward the lowest variable cost.

•One solution to the previously viewed load curve

•Base loaded units supply energy such that their loading is continuous where they are most efficient (lowest production cost). Some Hydro units must be base loaded for flat flows for environmental reasons.

•Intermediate units are used to follow the rough shape of the load curve

•Peaking units are usually the most expensive and are used for following the load curve excursions (could be hydro to avoid costly purchases)

•Note – regulating units, like hydro, may be used to follow the minute by minute variations in load and the base, intermediate, and peaking units may be used to keep the regulating units in range.

When you expand this down to the minute time increment, you can see how variable this is on a moment by moment basis.

•Alternative generation sources are often termed "intermittent energy" sources since they can provide a considerable amount of energy (kWh) over the course of a specific time period, but the timing of that delivery is never certain.

•From a system operations point of view, these could be treated as "negative loads". The dispatcher cannot schedule them to be present at any particular time, and must, in fact, adjust other controllable resources around what these units are doing.

Want to explore the characteristics of intermittency with a wind farm output. This shows what happens over the course one day.

One month of wind farm, overlayed with one month of a solar field. How does this affect your planning?

Note that even though the output of solar does vary, it is pretty dependable as to when it shows up and when it leaves.

This is take from the California ISO. This shows the actual demand and the contribution of renewables to their grid. You can see the effects of solar.

This is the "Duck Curve"

Of concern is the amount of energy that needs to come on to meet the evening peak. You can see the ramp rate this day was 13,080 MW each hour. That is a lot and fast.

Shows effect if we have extensive solar penetration on our system. This is a possible future

Notice ramp on thermal dispatch

Notice how hydro would be reshaped – needed to compensate for solar, water management issues?

The yellow area on the thermal dispatch graph shows how much more the thermal would be backed off to adjust the addition of the solar contribution

The yellow area on the hydro shows how much less the hydro would be dispatched. You can see how much the impacts of the increased solar changes the hydro operation.

This is a storage battery project. Demand Response resources have not yet been seen as a value in all regions of the country.

Working to integrate market ideas with micro grids and micro transactional grids

Current technology is about 1 MW / container size (8ft X 40 ft) or about 40MW /acre - allows for space between containers

• When FERC opened up the transmission and generation markets, they defined 6 services that are required for reliable system operation. Many of these can be provided by hydro generators

This chart is a good summary of most the services that are needed to assure a reliable transmission grid. Not surprisingly, conventional resources already possess most of these traits. The newer renewable resources do not have some of these characteristics and a system operator needs to make sure there are enough of these services with the resources that are on-line. If you don't, you may have to shut something down to get the services you need. That is a complicated by "must take" contracts, incentive contracts, transmission constraints, etc.

This shows this plant for the day and how it moves around. This movement would have been smoother and less magnitude before area operating restrictions, market opportunities, and intermittent resources have come on.

This graph is a composite of "Load Following", AGC adjustments. These are all automated functions.

The last item is the voltage support required at times in the system. This plant is located on a long, lightly loaded line during parts of the year due to water for hydro units. Forces units to operate at relatively high power factors and stability limits. More risk to machines by operating at fringes of design limits.

This also shows that rather than specific balance, voltage (i.e. reactive) is managed withing operating high and low limits.

Hydro Turbines are massive – resistant to speed changes.

Steam or gas turbine generators (turbo generators) spin really fast.

Inertia = f(mass x angular velocity) = large mass x slow speed for a hydro unit = smaller mass x high speed for turbo unit

• Generation reserves are required to maintain continuity of service to the system loads upon loss of generation

- •Could be trips of utility units
- •Could be trips of lines over which purchases were being delivered

•NERC and RRO (RE) requirements dictate either levels of reserves required or system performance on occurrence of a credible outage

•One of the big items is weather. Extreme heat and extreme cold create different problems. Another contingency that is becoming more of an issue is availability of natural gas during cold snaps. The gas may be diverted to consumer heating load and not available for generation.

•Spinning reserve is on-line and automatically loads up based on governor response to system frequency decline (loss of power balance)

•Unloaded capacity of generators on-line

- Pump storage (doubly effective)
- •Unit in synchronous condense mode

•Non-spinning reserve is that which can be available in 10 minutes or less (starting reliability is important here)

•Units on standby

•Quick start units

•Replacement generation is that which the utility places on-line to unload the spinning and ten minute generation to prepare for the next contingency

•Other, more economical, units come on to allow non-spinning to come off or to re-establish spinning reserve

•Utilities can reserve power on machines operated by another utility

•Use tie lines to transmit energy

•Multiple utilities can form a "pool" and agree to share spinning reserve obligations and costs among the pool members

•Each systems largest credible generation loss is unlikely to happen at the same time, so pooling can reduce overall reserves to be carried (lower costs)

•Loads can be spinning reserves

•Large industrial customers can exchange low power rates for agreeing to be tripped off line for utility system generation shortages (works on other end of real power balance)

•Spinning reserve is on-line and automatically loads up based on governor response to system frequency decline (loss of power balance)

•Unloaded capacity of generators on-line

- Pump storage (doubly effective)
- •Unit in synchronous condense mode

•Supplemental reserve is that which can be available in 10 minutes or less (starting reliability is important here)

•Units on standby

Quick start units

•Replacement generation is that which the utility places on-line to unload the spinning and ten minute generation to prepare for the next contingency

•Other, more economical, units come on to allow non-spinning to come off or to re-establish spinning reserve

•Utilities can reserve power on machines operated by another utility

•Use tie lines to transmit energy

•Multiple utilities can form a "pool" and agree to share spinning reserve obligations and costs among the pool members

•Each systems largest credible generation loss is unlikely to happen at the same time, so pooling can reduce overall reserves to be carried (lower costs)

•Loads can be spinning reserves

•Large industrial customers can exchange low power rates for agreeing to be tripped off line for utility system generation shortages (works on other end of real power balance)

Power Production does not happen independently. It happens in the context of all the other competing uses.

Factors that you need to consider for planning purposes

Depending on the resource type you have available to you, you need to consider the different characteristics of the resource types.

Planning and dispatching hydro resources

An hydrologist's view of a river system.

Rivers – Little Tallapoosa, Tallapoosa, Hillabee Creek, Coosa

Dams – Harris, Martin, Yates, Thurlow

Rain Gauges – Carrolton, Bremen, Rockrun, Colvin Gap, Anniston, Dearmanville,

Cheaha, Talladega, Ashland, Roanoke, Dadeville, Alexander, Auburn

Stream Gauges – Tallapoosa, Bowdon, Milstead, Montgomery Water, Wetumpka Rain and Stream Gauges – Newell, Heflin, Wadley, Horseshoe Bend, Hackneyville

- •Storage Reservoirs vs Run of River
- •Geographic and Geologic Locations
- •Time Factors and Lag Times
- •Reservoir and Turbine Characteristics

A 10 k increase at LWG.

If we could store it we could deal with it some other day. But we can't store because of 1 ft. FB limit.

Moving it all the way through the system means 500 MW of excess power each hour for the rest of the day.

We could back off GCL but what about tomorrow? What if We HAD to draft GCL that amount?? To keep things the same out of GCL we would have to sell 500 and put all that load across LSN and LCOL

GCL – Grand CouleeCHJ – Chief JosephLWG – Lower GraniteLGS – Little GooseLMN – Lower MonumentalIHR – Ice HarborMCN – McNaryJDA – John DayTDA – The DallesBON – Bonneville

The times in hours represent the water travel time. For example, it takes 2 hours for a release from The Dalles (TDA) to reach Bonneville Dam (BON) Another perspective, a release from Grand Coulee (GCN) takes (3+21+3+1+2=) 30 hours to reach Bonneville Dam. Think about it – more than a day.

To help operations, often rule curves are developed based on historical information, changes in unit operation, and other water demands.

Black start

•Due to the simplicity of the auxiliary systems, hydro units are often used as black start projects. The few auxiliaries that are required can be carried by local engine generators or even batteries until the main unit(s) have started up.

•Energizing transmission lines

 The relatively high capacity of the salient pole machine in the underexcited region allows the hydro machine to energize longer lines than an similarly sized cylindrical rotor machine
 Ride-through disturbances

•Steam turbine blades are subjected to pressure pulses related to operating speed. Blades are designed and built to avoid natural resonant frequencies at normal operating speed. Operation at off-nominal frequency (real power balance problems) results in pressure pulse frequency changing. Turbine must be tripped before resonant frequencies of turbine blades approaches pressure pulse frequency due to reduced or increased speed.

•High efficiency large frame industrial gas turbines have tight tolerances on blade temperature. Reduced shaft speed due to reduced frequency results in higher blade temperatures at the same load level, so some turbine controls will reduce load on the machine as frequency drops. Since this aggravates the real power balance, the frequency decline is worsened by this action.

•Hydro units have neither problem and are less sensitive to frequency excursions in either direction

•Spinning Reserves (also called Active Reserves)

•These are both units that are on-line but not producing power and any power between actual output level and Pmax.

• Voltage Regulation

•The relatively high capacity of the salient pole machine in the underexcited region allows the hydro machine to energize longer lines than a similarly sized cylindrical rotor machine

•Dec Reserve

•Hydro can easily incrementally increase or decrease their output at minimal increment impact in efficiency. Even then, there is not incremental fuel cost. Inc Reserves can be limited based on forebay limits if the reservoir is full.

Indicates the relative efficiency of different types of hydro units. (adjustable guide vanes is the same thing as wicket gates)

Some climate change studies are showing dramatic shifts in rainfall distribution and timing even in the next 50 years.

Other factors would likely be the shift to electric vehicles The use of Distributed Resources Advances in battery storage technologies Development of small nuclear plants.

