TEST 9

Algebraic Manipulation and Formulae

Marks:

/80

Time: 1 hour 30 minutes

Name:	Date:
alile	Date

INSTRUCTIONS TO CANDIDATES

Section A (40 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may not be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 1 Make x the subject of the formula.

$$\frac{x}{a} + \frac{x}{3b} = a$$

(a) Given that $\frac{3u-2v}{u-4v} = \frac{4}{5}$, find the value of $\frac{u}{v}$. (b) (i) Find the HCF of $20a^2b^3$ and $5a^5b^2$. (ii) Find the LCM of $12pq^2r^3$ and $21p^2qr^4$.

Answer (a)[2]

(b) (i) HCF =.....[1]

(ii) LCM =[1]

3

(a

(b

(b)
$$\frac{8x^3y}{5(x+2)} \div \frac{10xy^3}{(x+2)^2}$$

Answer (a)[1]

b)[2]

5

- 4 (a) Express $\frac{5}{3x-2} \frac{3}{x+3}$ as a single fraction in its simplest form.
 - (b) Solve the equation $x + 4 = \frac{x + 4}{x 2}$.

Answer (a) [2]

(b)[3]

(a) Find the (i) HCF and the (ii) LCM of $2x^2y^2z^3$, $6x^2yz$ and $8x^3y$. (b) Given that $k = \frac{g^2h - h^2}{g^2 - k}$, express g in terms of k and h.

- 6 (a) Simplify $\frac{x^2 4xy + 4y^2}{x^2 2xy}$.
 - (b) Express $\frac{3}{x-y} \frac{2}{x+y}$ as a single fraction in its lowest term.

Answer (a) [2]

(b)[2]

(a) Simplify $\frac{a^2 + ab + ac + bc}{a^2 + ab - ac - bc}.$ (b) Solve the equation $\frac{x}{x - 1} + x = \frac{x - 2}{1 - x} - 2.$

Answer (a)[2	2]
--------------	----

Solve the following equations.

(a)
$$5 + \frac{7}{x-2} = 4x$$

(a)
$$5 + \frac{7}{x-2} = 4x$$

(b) $\frac{4}{3x-3} + \frac{3}{1-x} = 2$

Answer	(a)	[2]
	(b)	[2]

(b)
$$\frac{5}{2-x} - \frac{3}{4-2x} + \frac{1}{x-2} = 2$$

Answer (a)[3]

(b)[2]

Test 9: Algebraic Manipulation and Formulae

95

10 The area of a rectangle is $\frac{45x^2}{14y^2}$ cm² and its breadth is $\frac{5x}{7y}$ cm.

Find an expression in terms of x and y for

- (a) the length of the rectangle,
- (b) the perimeter of the rectangle.

Answer (a) cm [2]

(b) cm [2]

INS'

Secti

1. *I*

2. (

11 (

INSTRUCTIONS TO CANDIDATES

Section B (40 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 11 (a) Given that $\frac{a}{3} = \sqrt{\frac{b+1}{b-1}}$, express b in terms of a.
 - (b) Simplify $\frac{6a^2b 15a^3b^3 + 21a^3b}{3ab}$.
 - (c) When x^2 is divided by (x-5), the quotient is 20 and the remainder is 1. Find the possible values of x.

- 12 (a) Given that $a = \frac{1}{b} \frac{1}{c}$, $b = d^2 1$ and c = 1 + d, express a in terms of d in its simplest form.
 - (b) Find the number which, increased by its reciprocal is equal to $\frac{37}{6}$.

Answer	(a)	[3
	(b)	[5]

13 (a

(b

- (i) $\frac{2}{x+2y} \frac{x-6y}{x^2-4y^2}$
- (ii) $x + y \frac{2xy}{x + y}$
- (b) Solve the equation $\frac{x}{x-2} + \frac{x-2}{x} = \frac{5}{2}$.

Answer	(a)	(i)	[3]
		(ii)	[2]
	(h)		500

Test 9: Algebraic Manipulation and Formulae

14 Benjamin can buy x pens f	for	\$30.
--------------------------------	-----	-------

(a) Write down, an expression in terms of x, for the cost of each pen.

He could also buy 5 more rulers than pens using the same amount of money.

(b) Write down, an expression in terms of x, for the cost of each ruler.

10 rulers will cost \$3 less than 10 pens.

(c) Write down an equation in terms of x to represent the information given and show that it reduces to $x^2 + 5x - 500 = 0$.

(d) Hence solve the equation $x^2 + 5x - 500 = 0$ to find the values of x.

(e) Find the cost of each ruler.

Answer	(a) \$	[1]
	(b) \$	[1]
	(d)	[2]
	(e) \$	[1]

15 A

(c

- 15 A fruitseller bought some durians for \$300. He paid \$x for each kilogram of durians.
 - (a) Find, in terms of x, an expression for the number of kilograms of durians he bought.
 - (b) The fruitseller had to throw away 3 kg of durians that were rotten and sold the remainder for \$2 per kg more than he paid for it. Write down, an expression in terms of x, for the sum of money he received.
 - (c) He made a profit of \$132. Write down, an equation in terms of x, to represent this information and show that it reduces to $x^2 + 46x 200 = 0$.
 - (d) Hence solve the equation $x^2 + 46x 200 = 0$ for the values of x.
 - (e) How many kilograms of durians did he sell altogether?

Answer	(a) kg	[1]
	<i>(b)</i> \$	[2]
	(d)	[2]
*.	(e) kg	[1]

(b)

Let x cm and y cm be the lengths of PQ and QRrespectively.

Perimeter of PQRS = 26 cm (Given)

$$2(x + y) = 26$$
 Divide both sides by 2,

$$x + y = 13$$

Area of the 4 squares = 178 cm^2 (Given)

$$x^{2} + x^{2} + y^{2} + y^{2} = 178$$

$$2x^{2} + 2y^{2} = 178$$

$$x^{2} + y^{2} = 89$$
Sides by 2

$$(x + y)^2 = x^2 + 2xy + y^2$$
 Use $(a + b)^2 = a^2 + 2ab + b^2$

$$(x + y)^2 = (x^2 + y^2) + 2xy$$
 Substitute $x + y = 13$
 $(13)^2 = 89 + 2xy$ and $x^2 + y^2 = 89$.

$$2xy = 169 - 89 = 80$$
$$xy = \frac{80}{2} = 40$$

Area of
$$PQRS = xy$$

 $=40 \text{ cm}^2$

15. (a) Time taken =
$$\frac{80 \text{ km}}{x \text{ km/h}}$$
 Use Total time taken:
$$= \left(\frac{80}{x}\right) \text{h}$$

$$= \frac{\text{Total distance travelled}}{\text{Average speed}}$$

(b) Time taken =
$$\frac{30 \text{ km}}{(x-15) \text{ km/h}}$$
 Average speed is 15 km/h slower = $\left(\frac{30}{x-15}\right)$ lh \therefore average speed = $(x-15)$ km/h

(c) Total time taken = $10\ 30 - 07\ 30 = 3\ h$

Rest

$$\frac{80}{x} + 1 + \frac{30}{x - 15} = 3$$

$$\frac{80}{x} + \frac{30}{x - 15} = 2$$

$$\frac{80(x - 15) + 30x}{x(x - 15)} = 2$$

$$80(x - 15) + 30x = 2$$

$$80x - 1200 + 30x = 3$$

$$80(x-15) + 30x = 2x(x-15)$$
 Multiply both sides $80x - 1200 + 30x = 2x^2 - 30x$ by $x(x-15)$. $2x^2 - 140x + 1200 = 0$ Divide both sides by 2.

$$2x^2 - 140x + 1200 = 0$$
 Divide both sides by 2.
 $x^2 - 70x + 600 = 0$ Shown

(d)
$$x^2 - 70x + 600 = 0$$

 $(x - 60)(x - 10) = 0$
 $x - 60 = 0$ or $x - 10 = 0$
 $x = 60$ or $x = 10$

(e)
$$x = 60$$
 Reject $x = 10$.
Time taken = $\frac{80 + 30}{60}$ Total time taken
$$= 1\frac{5}{6} \text{ h}$$

$$= 1 \text{ h } 50 \text{ min}$$

$$07 30 + 1 \text{ h } 50 \text{ min} = 09 20$$

: the motorist will reach Town B at 09 20.

Test 9: Algebraic Manipulation

Section A

1.
$$\frac{x}{a} + \frac{x}{3b} = c$$

$$x\left(\frac{1}{a} + \frac{1}{3b}\right) = c$$
Extract common factor, x.
$$x\left(\frac{3b + a}{3ab}\right) = c$$
The LCM of a and 3b is 3ab.
$$x = \frac{3abc}{3b + a}$$
Cross multiply and express x in terms of the other variables.

2. (a)
$$\frac{3u - 2v}{u - 4v} = \frac{4}{5}$$
 Cross-multiply.
$$5(3u - 2v) = 4(u - 4v)$$
$$15u - 10v = 4u - 16v$$
$$11u = -6v$$
 Divide both sides by 11v.
$$\frac{u}{v} = -\frac{6}{11}$$

(b) (i)
$$20a^2b^3 = 2^2 \times 5 \times a^2 \times b^3$$

 $5a^5b^2 = 5 \times a^5 \times b^2$
 $\therefore \text{HCF} = 5 \times a^2 \times b^2$
 $= 5a^2b^2$

Teacher's Tip

To obtain the Highest Common Factor (HCF), find the largest number of factors which are common to both expressions.

(ii)
$$12pq^2r^3 = 2^2 \times 3 \times p \times q^2 \times r^3$$

 $21p^2qr^4 = 3 \times 7 \times p^2 \times q \times r^4$
 $\therefore LCM = 2^2 \times 3 \times 7 \times p^2 \times q^2 \times r^4$
 $= 84p^2q^2r^4$

Teacher's Tip

To obtain the Least Common Multiple (LCM), find the smallest group of factors which contain all the factors of the two expressions.

(b)
$$\frac{8x^3y}{5(x+2)} \div \frac{10xy^3}{(x+2)^2}$$
 Change + to × by inverting the divisor.

$$= \frac{8x^3y}{5(x+2)} \times \frac{(x+2)^2}{10xy^3}$$

$$= \frac{4x^2(x+2)}{25y^2}$$

4. (a)
$$\frac{5}{3x-2} - \frac{3}{x+3}$$

$$= \frac{5(x+3) - 3(3x-2)}{(3x-2)(x+3)}$$
 The LCM of $(3x-2)$?
$$= \frac{5x+15-9x+6}{(3x-2)(x+3)}$$
 $(3x-2)(x+3)$

 $\frac{21 - 4x}{(3x - 2)(x + 3)}$

Teacher's Tip

Do not expand the denominator since the question requires the answer in its simplest form, i.e. the factorised form.

(b)
$$x + 4 = \frac{x + 4}{x - 2}$$

 $(x - 2)(x + 4) = x + 4$ Multiply both $x^2 + 4x - 2x - 8 = x + 4$ sides by $(x - 2)$.
 $x^2 + x - 12 = 0$
 $(x - 3)(x + 4) = 0$
 $x - 3 = 0$ or $x + 4 = 0$
 $x = 3$ or $x = -4$

5. (a)
$$2x^2y^2z^3 = 2$$
 $\times x^2 \times y^2 \times z^3$
 $6x^2yz = 2 \times 3 \times x^2 \times y \times z$
 $8x^3y = 2^3 \times x^3 \times y$

(i) HCF =
$$2 \times x^2 \times y = 2x^2y$$

(ii) LCM = $2^3 \times 3 \times x^3 \times y^2 \times z^3 = 24x^3y^2z^3$

(b)
$$k = \frac{g^2h - h^2}{g^2 - k}$$
 Cross-multiply and express g.

 $k(g^2 - k) = g^2h - h^2$ Collect all terms containing.

$$kg^{2} - k^{2} = g^{2}h - h^{2}$$

$$kg^{2} - g^{2}h = k^{2} - h^{2}$$

$$kg^{2} - g^{2}h = k^{2} - h^{2}$$

$$g^{2}(k - h) = k^{2} - h^{2}$$

Collect all terms containing g to the left-hand side and then factorise.

$$g^{2} = \frac{k^{2} - h^{2}}{k - h} \quad \text{Use a} - b^{2} = (a + b)(a - b).$$

$$= \frac{(k + h)(k - h)}{(k - h)}$$

$$= k + h$$

$$g = \pm \sqrt{k + h} \quad \text{Take square root on}$$

Take square root on both sides.

6. (a)
$$\frac{x^2 - 4xy + 4y^2}{x^2 - 2xy}$$
$$= \frac{(x - 2y)(x - 2y)}{x(x - 2y)}$$
$$= \frac{x - 2y}{x}$$

Teacher's Tip

Factorise both the numerator and denominator completely before cancelling common factors.

(b)
$$\frac{3}{x-y} - \frac{2}{x+y}$$
 The LCM is $(x-y)(x+y)$.

$$= \frac{3(x+y) - 2(x-y)}{(x-y)(x+y)}$$

$$= \frac{3x+3y-2x+2y}{(x-y)(x+y)}$$

$$= \frac{x+5y}{(x-y)(x+y)}$$

7. (a)
$$\frac{a^2 + ab + ac + bc}{a^2 + ab - ac - bc}$$

$$= \frac{a(a+b) + c(a+b)}{a(a+b) - c(a+b)}$$
Factor out $(a+b)$, the common factor of the numerator and denominator.
$$= \frac{(a+b)(a+c)}{(a+b)(a-c)}$$

$$= \frac{a+c}{a+b}$$

(b)
$$\frac{x}{x-1} + x = \frac{x-2}{1-x} - 2$$
 Note: $1-x = -(x-1)$
 $\frac{x}{x-1} + x = -\left(\frac{x-2}{x-1}\right) - 2$ $\frac{x-2}{1-x} = -\left(\frac{x-2}{x-1}\right)$
 $\frac{x}{x-1} + x + \frac{x-2}{x-1} + 2 = 0$
 $x + x(x-1) + (x-2) + 2(x-1) = 0$
 $x + x^2 - x + x - 2 + 2x - 2 = 0$
 $x^2 + 3x - 4 = 0$
 $(x-1)(x+4) = 0$
 $x = 1$ (rejected) or $x + 4 = 0$
 $x = -4$

Teacher's Tip

x = 1 is rejected because division by 0 is undefined. x = 1 is not a solution.

8. (a)
$$5 + \frac{7}{x-2} = 4x$$

 $5(x-2) + 7 = 4x(x-2)$ Multiply throughout by the LCM, $(x-2)$.
 $4x^2 - 13x + 3 = 0$
 $(4x-1)(x-3) = 0$
 $\therefore 4x - 1 = 0$ or $x-3 = 0$
 $x = \frac{1}{4}$ or $x = 3$

(b)
$$\frac{4}{3x-3} + \frac{3}{1-x} = 2$$
 Factorise the denominator first before finding the LCM.
 $\frac{4}{3(x-1)} + \left(-\frac{3}{x-1}\right) = 2$

$$\frac{4}{3(x-1)} - \frac{3}{x-1} - 2 = 0$$

$$4 - 3(3) - 2[3(x-1)] = 0$$
 Multiply throughout by $4 - 9 - 6x + 6 = 0$ the LCM, $3(x-1)$.
 $6x = 1$

$$x = \frac{1}{6}$$

9. (a)
$$\frac{1}{3x-12} - \frac{x^2-1}{4+3x-x^2} = 0$$

$$\frac{1}{3(x-4)} - \frac{x^2-1}{(4-x)(1+x)} = 0$$
Factorise each of the denominators first.

$$\frac{1}{3(x-4)} + \frac{x^2-1}{(x-4)(x+1)} = 0$$

$$(x+1) + 3(x^2-1) = 0$$
Multiply
$$x+1+3x^2-3=0$$
throughout by
$$3x^2+x-2=0$$
the LCM,
$$(3x-2)(x+1)=0$$

$$3(x+1)(x-4)$$

$$\therefore 3x-2=0$$
 or $x+1=0$

$$x=\frac{2}{3}$$
 or $x=-1$ (rejected)

(b)
$$\frac{5}{2-x} - \frac{3}{4-2x} + \frac{1}{x-2} = 2$$

 $\frac{5}{2-x} - \frac{3}{2(2-x)} - \frac{1}{2-x} = 2$
 $2(5) - 3 - 2(1) = 2[2(2-x)]$ Multiply
 $10 - 3 - 2 = 8 - 4x$ throughout by the $4x = 3$ LCM, $2(2-x)$.
 $x = \frac{3}{4}$

10. (a) Area of rectangle =
$$\frac{45x^2}{14y^2}$$
 (Given) rectangle = Length ×

(Length) × $\left(\frac{5x}{7y}\right)$ = $\frac{45x^2}{14y^2}$ Breadth

Length = $\frac{45x^2}{14y^2}$ × $\frac{7y}{5x}$ = $\frac{5x}{7y}$ (Given) = $\frac{9x}{2y}$ cm

(b) Perimeter of rectangle
= 2(Length + Breadth)
=
$$2\left(\frac{9x}{2y} + \frac{5x}{7y}\right)$$

= $2\left[\frac{7(9x) + 2(5x)}{7!4y}\right]$ The LCM of 2y and 7y is 14y.
= $\frac{63x + 10x}{7y}$
= $\frac{73x}{7y}$ cm

Section B

11. (a)
$$\frac{a}{3} = \sqrt{\frac{b+1}{b-1}}$$

$$\left(\frac{a}{3}\right)^2 = \frac{b+1}{b-1}$$
 Square both sides.
$$\frac{a^2}{9} = \frac{b+1}{b-1}$$
 Cross-multiply.
$$a^2(b-1) = 9(b+1)$$

$$a^2b - a^2 = 9b + 9$$

$$a^2b - 9b = a^2 + 9$$

$$b(a^2 - 9) = a^2 + 9$$

$$b = \frac{a^2 + 9}{a^2 - 9}$$

(b)
$$\frac{6a^{2}b - 15a^{3}b^{3} + 21a^{3}b}{3ab}$$

$$= \frac{3a^{2}b'(2 - 5ab^{2} + 7a)}{3ab'}$$
Extract common factor of numerator, $3a^{2}b$.
$$= a(2 - 5ab^{2} + 7a)$$

Quotient Remainder
$$\begin{array}{c}
\text{Quotient Remainder} \\
\downarrow & \downarrow \\
\text{(c)} \quad \frac{x^2}{x-5} = 20 + \frac{1}{x-5}
\end{array}$$
Given that when x^2 is divided by $(x-5)$, the quotient is 20 and the remainder is 1.
$$x^2 = 20(x-5) + 1 \quad \text{Multiply} \\
x^2 = 20x - 100 + 1 \quad \text{throughout by}$$

$$x^2 = 20x - 100 + 1$$
 throughout by
 $x^2 - 20x + 99 = 0$ the LCM,
 $(x - 9)(x - 11) = 0$ $(x - 5)$.
 $\therefore x - 9 = 0$ or $x - 11 = 0$
 $x = 9$ or $x = 11$

Check answer:

When
$$x = 9$$
: $\frac{9^2}{9-5} = \frac{81}{4} = 20$ remainder 1.
When $x = 11$: $\frac{11^2}{11-5} = \frac{121}{6} = 20$ remainder 1.

(b) Let x be the number. The reciprocal of a number $\frac{1}{x}$ is the reciprocal. A is the number $\frac{1}{A}$. $x + \frac{1}{x} = \frac{37}{6}$ Given the number added to its $6x^2 + 6 = 37x$ reciprocal is equal to $\frac{37}{6}$. $6x^2 - 37x + 6 = 0$ Multiply throughout by the (6x - 1)(x - 6) = 0 LCM, 6x. $\therefore 6x - 1 = 0$ or x - 6 = 0 $x = \frac{1}{6}$ or x = 6

 \therefore the number may be taken as $\frac{1}{6}$ and the reciprocal 6 or the number can be taken as 6 and the reciprocal as $\frac{1}{6}$.

Check answer: $6 + \frac{1}{6} = \frac{37}{6}$

13. (a) (i) $\frac{2}{x+2y} - \frac{x-6y}{x^2-4y^2}$ $= \frac{2}{x+2y} - \frac{x-6y}{(x+2y)(x-2y)}$ $= \frac{2(x-2y) - (x-6y)}{(x+2y)(x-2y)} \qquad \text{Use } a^2 - b^2$ = (a+b)(a-b) $= \frac{2x-4y-x+6y}{(x+2y)(x-2y)} \qquad \text{on } x^2-4y^2.$ $= \frac{-(x+2y)}{-(x+2y)(x-2y)} \qquad \text{ex} x^2-(2y)^2$ $= \frac{-(x+2y)}{(x+2y)(x-2y)} \qquad \text{on } x^2-(2y)^2.$ $= x^2-(2y$

(ii)
$$x + y - \frac{2xy}{x + y}$$

$$= \frac{x(x + y) + y(x + y) - 2xy}{x + y}$$
The LCM
is $(x + y)$.
$$= \frac{x^2 + xy + xy + y^2 - 2xy}{x + y}$$

$$= \frac{x^2 + y^2}{x + y}$$

(b)
$$\frac{x}{x-2} + \frac{x-2}{x} = \frac{5}{2}$$

 $2x^2 + 2(x-2)^2 = 5x(x-2)$ Multiply
 $2x^2 + 2(x^2 - 4x + 4) = 5x^2 - 10x$ throughout by
 $2x^2 + 2x^2 - 8x + 8 = 5x^2 - 10x$ the LCM,
 $x^2 - 2x - 8 = 0$ $2x(x-2)$.
 $(x+2)(x-4) = 0$ Use $(a-b)^2$
 $\therefore x+2=0$ or $x-4=0$ $= a^2 - 2ab + b^2$ to
 $x=-2$ or $x=4$ expand $(x-2)^2$.

- 14. (a) Cost of each pen = $\$\left(\frac{30}{x}\right)$
 - (b) Cost of each ruler = $\$\left(\frac{30}{x+5}\right)$
 - (c) $10\left(\frac{30}{x+5}\right) = 10\left(\frac{30}{x}\right) 3$ 10 rulers cost \$3 less than 10 pens. (Given) $\frac{300}{x+5} \frac{300}{x} + 3 = 0$ Multiply throughout by the LCM, 300x 300(x+5) + 3x(x+5) = 0 by the LCM, $300x 300x 1500 + 3x^2 + 15x = 0$ x(x+5). $3x^2 + 15x 1500 = 0$ Divide throughout by 3, $x^2 + 5x 500 = 0$ Shown
 - (d) $x^2 + 5x 500 = 0$ (x - 20)(x + 25) = 0 $\therefore x - 20 = 0$ or x + 25 = 0x = 20 or x = -25
 - (e) : x = 20 Reject x = -25. Cost of each ruler = $\$ \left(\frac{30}{20 + 5} \right)$ = \$1.20
- 15. (a) No. of kilograms of durians bought $= \frac{300}{r}$
 - (b) Sum of money received $= \$ \left[\left(\frac{300}{x} 3 \right) \times (x + 2) \right]$ $= \$ \left[\left(\frac{300 3x}{x} \right) (x + 2) \right]$ $= \$ \left[\left(\frac{300 3x}{x} \right) (x + 2) \right]$ $= \$ \left[\frac{3(100 x)(x + 2)}{x} \right]$

Sum of money -\$300 = Profit

(c) $\frac{3(100-x)(x+2)}{x} - 300 = 132$ $\frac{{}^{1}\cancel{5}(100-x)(x+2)}{x} = 432^{144}$ Divide both sides by 3. (100-x)(x+2) = 144x by 3. $100x + 200 - x^{2} - 2x = 144x$ Multiply throughout $x^{2} + 46x - 200 = 0$ Shown by x.

and or see

(d)
$$x^2 + 46x - 200 = 0$$

 $(x - 4)(x + 50) = 0$
 $\therefore x - 4 = 0$ or $x + 50 = 0$
 $x = 4$ or $x = -50$

Reject x = -50. (e) : x = 4No. of kilograms of durians sold = 72

Test 10: Simultaneous Linear Equations

Section A

1. Method 1: Elimination Method

$$2x + 3y = 12$$
 (1)
 $x - 4y = -5$ (2)
 $2x - 8y = -10$ (3)

(2)
$$\times$$
 2: $2x - 8y = -10$ (3) (1) $-$ (3): $3y - (-8y) = 12 - (-10)$
 $3y + 8y = 12 + 10$ To eliminate x; make the coefficients of x.

11y = 22

$$y = \frac{22}{11} = 2$$
 the coefficients of x' to be equal by multiplying (2) by 2.

Substitute
$$y = 2$$
 into (2):
 $x - 4(2) = -5$ into any of the original $x - 8 = -5$ equations to find the value of $x = -5 + 8$ into any of the original $x = -5 + 8$ equations to find the value of $x = -3$

 \therefore the solution set is x = 3, y = 2.

Teacher's Tip

- 1) In this method, we first eliminate one of the two unknowns. Either of the unknowns may be eliminated first. In the above question, it is easier to eliminate x.
- 2) Make a habit of checking your answer either, mentally or by writing down.

Check: Substitute
$$x = 3$$
, $y = 2$ into (1):
LHS = $2(3) + 3(2) = 6 + 6 = 12 = RHS$

Method 2: Substitution Method

$$2x + 3y = 12$$
 (1)
 $x - 4y = -5$ (2)

From (2):
$$x = -5 + 4y$$
 (3) Make x the subject

Substitute (3) into (1):

$$2(-5 + 4y) + 3y = 12$$

$$-10 + 8y + 3y = 12$$
of the equation.

Substitute (3)
into (1) to obta

$$2(-5 + 4y) + 3y = 12$$

$$-10 + 8y + 3y = 12$$

$$11y = 22$$

$$y = \frac{22}{11} = 2$$
Substitute (3)
into (1) to obtain an equation with only the y variable:

Substitute
$$y = 2$$
 into (3):
 $x = -5 + 4(2)$
 $= -5 + 8$
 $= 3$

 \therefore the solution set is x = 3, y = 2.

Teacher's Tip

In this method, we solve one of the equations for one unknown and substitute this expression into the other equation to solve for the remaining unknown.

2.
$$4x - 3y = 18$$
 — (1) $7x + 5y = 11$ — (2)

(1)
$$\times$$
 5: $20x - 15y = 90$ — (3) To eliminate y,
(2) \times 3: $21x + 15y = 33$ — (4) make the

(1)
$$\times$$
 3. $20x - 13y = 90$ (2) 16 eliminate y,
(2) \times 3: $21x + 15y = 33$ (4) make the coefficients of y to be equal by $x = \frac{123}{41} = 3$ multiplying (1) by 5 and (2) by 3.

Substitute
$$x = 3$$
 into (1):
 $4(3) - 3y = 18$
 $12 - 3y = 18$
 $-3y = 6$
 $y = \frac{6}{-3} = -2$

 \therefore the solution set is x = 3, y = -2.

(1) + (2):
$$4y = 4$$

 $y = \frac{4}{4} = 1$

Substitute
$$y = 1$$
 into (1):

$$2x - 1 = 11$$

$$2x = 12$$

$$x = \frac{12}{2} = 6$$

 \therefore the solution set is x = 6, y = 1.

Teacher's Tip

Note that the coefficients of x are equal but one is positive and the other is negative. To eliminate x, add the two equations.

4.
$$h-5k=-3$$
 — (1) Since the coefficients of h are equal, subtract (1) from (2) to eliminate h .

(2) - (1):
$$3k - (-5k) = 1 - (-3)$$

 $3k + 5k = 1 + 3$
 $8k = 4$
 $k = \frac{4}{8} = \frac{1}{2}$