

SCEGGS Darlinghurst

2013

Preliminary Course Semester 1 Examination

Mathematics Extension 1

General Instructions

- Time allowed 1 hour
- This paper has two sections
- · Attempt all questions
- Write using black or blue pen
- Answer Section I on the multiple-choice answer sheet provided
- Answer Section II questions in the writing booklets provided
- Begin each question in a new writing booklet
- · Draw all diagrams using a pencil and ruler
- Marks will be deducted for careless or badly arranged work
- Approved scientific calculators and mathematical templates may be used

Total marks - 36

Section I

4 marks

- Attempt Questions 1-4
- Allow about 6 minutes for this part

Section II

32 marks

- Attempt Questions 5-7
- Allow about 54 minutes for this section

Question	Basic Arithmetic & Algebra	Equations	Trigonometry TOTAL		
1–4	/2	/1	/1	/ /4	
5	/2	_/3	./5	/10	
6	12	/6	/3	/11	
7	/3	/3	/5	/11	
TOTAL	. /9	· /13	/14	/36	

Section I – Multiple Choice

4 marks
Attempt Questions 1–4
Allow about 6 minutes for this section

Use the multiple-choice answer sheet provided.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

2 + 4 =

(A) 2

(B)

(C) 8

(D) 9

C (

 $D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A 🕔

В

 $c \subset$

 $D \leftarrow$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

В

 $c \subset$

 $D \subset$

$$1 \qquad \left(2\sqrt{6} - \sqrt{2}\right)^2 =$$

- (A) 26
- (B) $26 4\sqrt{3}$
- (C) 22 "
- (D) $26 8\sqrt{3}$
- The solution to |3x+2| = 4x+1 is
 - (A) $x = 1 \text{ and } x = -\frac{3}{7}$
 - (B) x = 1 only
 - (C) $x = -\frac{3}{7}$ only
 - (D) no value of x
- The simplified form of $12^n \times 4^{n+1}$ is
 - (A) 48^{2n+1}
 - (B) 48^{n^2+1}
 - $(C) 2^{4n+1} \times 3^n$
 - $(D) 4^{2n+1} \times 3^n$

4 The bearing of A from O is 20° and the bearing of B from O is 290° .

If A is 10 km from O and B is 7 km from O, find the bearing of B from A.

- (A) 55°
- (B) 75°
- (C) 235°
- (D) 255°

End of Section II

Section II

32 marks

Attempt Questions 5-7

Allow about 54 minutes for this section

Answer the question in a writing booklet. Extra writing booklets are available. Answer each question in a SEPARATE writing booklet.

Question 5 (10 marks)

Make x the subject of the formula

$$y = \frac{1 - x}{3 + x}$$

(b) Solve
$$x^4 - 2x^2 - 15 = 0$$

(c) Given
$$\sin x = -\frac{3}{4}$$
 and $\tan x > 0$, evaluate $\sec x$ in surd form.

(d) Find
$$\angle BCA$$
.

 $\sqrt{3}$

NOT TO **SCALE** • Start a NEW writing booklet

Question 6 (11 marks)

Solve simultaneously

$$3x - y - 2 = 0$$
$$y = 2x^2 - 5x + 4$$

Simplify fully

$$\frac{x^{-1}-y^{-1}}{x-y}$$

(c) Solve

$$\frac{3-x}{x} \ge 1$$

Solve for $-180^{\circ} \le \theta \le 180^{\circ}$,

$$\tan 2\theta = \frac{-1}{\sqrt{3}}$$

3

3

• Start a NEW writing booklet

Question 7 (11 marks)

Solve simultaneously

$$2a + b - 4c = 6$$

$$a+3b+2c=7$$
$$a-b-6c=3$$

(b)

CD is a vertical flagpole of height 10 metres. It stands with its base on horizontal ground.

A and B are points on the ground due South and East of C respectively. The angle of elevation of D is 45° from A and 30° from B. E is the foot of the perpendicular from C to AB.

(i) Show
$$BC = 10\sqrt{3}$$
 m.

By finding AC, show $\angle ABC = 30^{\circ}$.

Find the angle of elevation of D from E, correct to the nearest degree.

Question 7 continues on the next page

Question 7 (continued)

(c) Consider the expression $x^6 - 1$.

Factorise this expression fully

as a difference of 2 squares.

as a difference of 2 cubes.

Hence express $x^4 + x^2 + 1$ in factorised form.

End of paper

2013 PRELIMINARY	COURSE	SEMESTER 1	EXAMINATION

Mathematics Extension 1

Centre Number

Section I 4 marks Student Number

Write your Student Number at the top of this page.

Multiple Choice Answer Sheet

Question	1	A O	В	C O D 🐠 🗸
•	2	A O	в 🥙	C O D O
•	3	A Ø	В	c 0 0 0 X
	4	A 🔘	В	C 🚳 D O 🗸

Student Number:
7. FICU = 1-24
5.a) y(3+x) = 1-x $2(1+y) = 1-3y$
1-34
$3y + xy = 1-x$ $2 = \frac{1-3y}{1+y}$
xy = 1 - x - 3y Rearrange x to same side X
m = 1-x-3y for first mark.
X
$\widehat{x} = \frac{1-3}{9} - 3$
x can't be in two places.
b) x/4~ x4-2x2-15=0
$\frac{x(x^2-5)(x^2+3)=0}{\text{make about } x^2+3=0},$ $\frac{x(x^2-5)(x^2+3)=0}{\text{make about } x^2+3=0},$
(E2)
c) $\sin x = -\frac{3}{4}$ (Quad 3)
tanx>0
$4^{2} = (-3)^{2} + 4^{2}$
$y^{4} = \sqrt{(-3)^{2}}$
y=+J7 (only possible for puth a most rule locate)
Store Calore and agrass rule language myst
- stare : since pigthagoras' rule length must be pusitive
$\overline{13}$

Student Number:	

5. d)
$$\cos C = \frac{\alpha^2 + b^2 - c^2}{2ab}$$

$$\cos C = (\sqrt{3})^2 + 2^2 - 1^2$$

$$2 \times \sqrt{3} \times 2$$

$$\cos C = \frac{3 + 4 - 1}{4\sqrt{3}}$$

$$\cos C = \frac{3.6}{24\sqrt{3}}$$

LIXBRAVA

$$C = \cos^{-1}\left(\frac{3}{2J3}\right)$$

:. LBCA = 30°

	_
	$\overline{}$
/	- `
1-1	つし

Student Number:	
-----------------	--

$$6a)3x - (2x^2 - 5x + 4) - 2 = 0$$

$$-2x^2 + 8x - 6 = 0$$

$$-x^2 + 4x - 3 = 0$$

$$(-x+1)(x-3)=0$$

$$\therefore x = 1 \cdot e^{-x}$$
 or $x = 3$

$$y = 2(1)^2 - 5(1) + 4$$
 $y = 2(3)^2 - 5(3) + 4$

$$= 2-5+4$$
 $= 2\times9-15+4$

$$6.6 = 1, y = 1$$
, $2x = 3, y = 7$

$$= \left(\frac{1}{x} - \frac{1}{y}\right) \div \left(x - y\right)$$

$$= \left(\frac{4x}{xq}\right) \times \frac{1}{x-y}$$

$$= -\frac{1}{xy}$$

Student Number:	

6.c)	3-2 ≥1	(D:	>c \(\)
	70		

 $\chi(3-\chi) \geq \chi^2$

 $3x-x^2 \ge z^2$

 $37c - \chi^2 - \chi^2 \ge 0$

30c-2x²≥0

 $\chi(3-2x)\geq 0$

 $\chi = 0, \chi = \frac{3}{2}$

1.0€x≤3/2

|--|

6.2)	tan 20 = - 1	(avad 224) 1	_
		·	

•	0		_					-
ເໍ່	G =	165°	,	-15°	, -105°	\supset	<u> </u>	425
							<u> </u>	

	1659775"
<	415
-105	

Student Number:	
-----------------	--

$$\alpha = 7 + 6(-\frac{3}{2})$$

$$2.a = -2$$

Student	Number:	

(iii (d. F	LDEC=	tan-1 (10)

LDEC = 49°6'23-78"

i. angle of elevation of D from E

= 49° (neavest dispree)

c) 766-1

i) CARNONERAND (CARY THE YEAR STAND

 $(x^3-1)(x^3+1)$

(111) $\chi^{2}(\chi^{2}+1)=-1$

- i) $(x^3-1)(x^3+1)=(x+1)(x^2-x+1)(x-1)(x^2+x+1)$
- ii) $(x^2 1)(x^4 + x^2 + 1) = (x+1)(x-1)(x^4 + x^2 + 1)$
- iii) $(x^2-x+1)(x^1)(x^2+x+1)=(x+1)(x+1)(x+1)$

 $(\chi^2 - \chi + 1)(\chi^2 + \chi + 1) = \chi^4 + \chi^2 + 1$