

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

April 2012

Assessment Task 2 Year 12

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen.
 Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 60

- Attempt sections A C.
- Start each **NEW** section in a separate answer booklet.
- Hand in your answers in 3 separate bundles:

Section A Section B Section C

Examiner:

J. Chen

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$

$$\text{NOTE: } \ln x = \log_{e} x, x > 0$$

START A NEW ANSWER BOOKLET

SECTION A [20 marks]

Marks

For these 10 questions there is one correct answer per question. Write down in your answer booklet the question number and letter of your answer.

1.

[1]

 $\int_{1}^{2} \frac{dx}{2x+5}$

equals

- (a) $\ln\left(\frac{9}{7}\right)$
- (b) $\frac{1}{2}\ln(63)$
- (c) $\frac{1}{2} \ln \left(\frac{9}{7} \right)$
- (d) ln(63)

2.

 $\lim_{x\to 0} \frac{\sin 2x}{x}$

[1]

equals

- (a) 2
- (b) 1
- (c) 0
- (d) $\frac{1}{2}$

3. If $\log_m 64 + \log_m 4 = x \log_m 2$, then the value of x is:
(a) 4

[1]

- (b) 8
- (c) 6
- (d) 2

4. $\frac{d}{dx}\log_e(e^{3x} + 2)$ equals
(a) $3e^{3x}$

[1]

- (b) $e^{3x} + 2$
- (c) $\frac{1}{e^{3x}+2}$
- (d) $\frac{3e^{3x}}{e^{3x}+2}$
- 5. The diagram below shows a part of the graph of a trigonometric function.

[1]

A possible equation for the function is

- (a) $y = 2 \sin 2x$
- (b) $y = -2\cos 2x$
- (c) $y = -2\sin\frac{x}{2}$
- (d) $y = 2\cos\frac{x}{2}$

6.

$$\int \cos 6x \cdot dx$$

[1]

equals

(a)
$$\frac{\sin 6x}{6} + C$$

(b)
$$-\frac{\sin 6x}{6} + C$$

- (c) $6 \sin 6x + C$
- (d) $-6 \sin 6x + C$

7.

$$\int 8xe^{x^2} dx$$

equals

(a)
$$4xe^{x^2} + C$$

(b)
$$8e^{x^2} + C$$

(c)
$$2xe^{x^2} + C$$

(d) None of the above

8. What is the exact value of sin 75°?

(a)
$$\frac{\sqrt{2}+\sqrt{6}}{4}$$

(b)
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$

(c)
$$\frac{\sqrt{6}+\sqrt{2}}{4}$$

(d)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

9.

$$\int_{-\pi}^{\pi} 2\sin x \cdot dx$$

equals

(c)
$$2 \int_0^{\pi} 2 \sin x \cdot dx$$

(d)
$$\left| \int_{-\pi}^{0} 2 \sin x \cdot dx \right| + \int_{0}^{\pi} 2 \sin x \cdot dx$$

10. If $f(x) = \cos 2x$, then $f'\left(-\frac{\pi}{6}\right)$ is:

(a)
$$\frac{\sqrt{3}}{2}$$

(b)
$$\sqrt{3}$$

(c)
$$-\frac{\sqrt{3}}{2}$$

(d) None of the above

End of Multiple Choice Section

[1]

[1]

[1]

11. Differentiate $\cot x$.

[2]

12. Solve the equation,

$$3\ln(x+1) = \ln(x^3 + 19)$$

- 13. Find the equation of the tangent to the curve $y = \sin x$ at $x = \pi$.
- [2]

[3]

14. PQ and XY are arcs of concentric circles with centre O. OP = PX = 4 m. The shaded sector OPQ has area $\frac{2\pi}{3}$ square metres. Find \angle POQ in degrees.

End of Section A

START A NEW ANSWER BOOKLET

SECTION B [20 marks]

Marks

1. At any point on the curve y = f(x) the gradient function is given by $\frac{dy}{dx} = \frac{x+1}{x+2}$. If y = -1 when x = -1, find the value of y when x = 1, correct your answer to the nearest 3 significant figures.

[4]

2. P and Q are centres of the circles, AXB is a straight line. Prove that $\angle APY = \angle BOY$ as marked below.

[3]

[2]

3. Evaluate

 $\int_{0}^{\frac{\pi}{6}} \sec^2 x \tan^8 x \, dx$

4. Consider the function $f(x) = \frac{\log_e x}{x^2}$.

[6]

Find the x intercept of the curve.

Find the coordinates of the turning point and the point of (ii) inflexion.

- Hence, sketch the curve y = f(x) and label the critical points (iii) and any asymptotes.
- 5. Consider the function $f(x) = x \sin x$.

[2]

- P(X,1) is a point on the curve y = f(x). Starting with an initial approximation of X = 2, use one application of Newton's Method to find an improved approximation to the value of X, giving the answer correct to 3 decimal places.
- 6. Prove by Mathematical Induction that $3^{3n} + 2^{n+2}$ is divisible by 5 for all integers $n \geq 1$.

[3]

End of Section B

START A NEW ANSWER BOOKLET

	CTIO	N C [20 marks]	Marks [2]						
1.	(i)	Show that there is a solution to the equation $x - 2 = \sin x$ between $x = 2.5$ and $x = 2.6$.	. [4]						
	(ii)	By halving the interval, find the solution correct to 2 decimal places.							
2.	(i)	[5]							
	(ii)	(ii) If $S = \sum_{k=1}^n \sin(x+k\pi)$ for $0 < x < \frac{\pi}{2}$ and for all positive integers n . Prove that $-1 < S \le 0$.							
3.	Consi (i)	ider the function $f(x) = e^x \left(1 - \frac{x}{4}\right)^4$. Find the coordinates of the stationary points and determine their nature.	[8]						
	(ii)	Sketch the curve $y = f(x)$ and label the turning points and any asymptotes.							
	(iii)	Hence, prove that $\left(\frac{5}{4}\right)^4 \le e \le \left(\frac{4}{3}\right)^4$.							

4. In the diagram, A, B, C and P are points on the circumference of the circle and $\triangle ABC$ is an equilateral triangle. X is a point on the straight line PC such that PX = BX. Prove that PC = PA + PB.

Copy or trace the diagram into your answer booklet.

End of Section C End of Exam

SECTION A

1.
$$\int_{1}^{2} \frac{dnc}{2x+5} = \frac{1}{2} \left[\ln (2x+5) \right]_{1}^{2}$$
$$= \frac{1}{2} \left[\ln q - \ln 7 \right]$$
$$= \frac{1}{2} \ln \frac{q}{7} \quad C$$

2.
$$\lim_{\chi \to 0} \frac{\sin 2\chi}{\chi} = \frac{1}{2} \lim_{\chi \to 0} \frac{\sin^2 \chi}{2 \pi}$$

$$= 2 \times 1$$

$$= 2 \qquad A$$

3.
$$log_m$$
 64 + log_m 4 = $1 \times log_m$ 2

$$LHS = log_m$$
 256
$$= log_m$$
 2
$$= 8 log_m$$
 2
$$X = 8$$

4.
$$\frac{d}{dx} \log_{2} (e^{3x} + 2)$$

$$= \frac{1}{e^{3x} + 2} \cdot e^{3x} \cdot 3$$

$$= \frac{3e^{3x} + 2}{e^{3x} + 2} \cdot D$$

5.
$$C y = -2\sin\frac{x}{2}$$

7.
$$\int 8x e^{x^2} dx$$

Let
$$u = \chi^2$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\cdot\frac{1}{2}$$

$$= \frac{\sqrt{3}+1}{2\sqrt{2}}$$

$$f'(-\frac{\pi}{6}) = -\sin(-\frac{\pi}{3})$$
, 2
= -2 x - $\sin(\frac{\pi}{3})$

11.
$$\frac{d}{dx}(\omega + x) = \frac{d}{dx}(\frac{\omega r x}{\sin x})$$

$$= \frac{-\left(\sin^2x + \cos^2x\right)}{\sin^2x}$$

$$= \frac{1}{\sin^2 x}$$

$$(x+3)(x-2)=0$$

i. Egn of tangel is
$$y = 0 = -1(2x-17)$$

$$y = -x+17$$

$$y+x=17$$

14. Area =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 16 \times \theta$ = $\frac{2\pi}{3}$
 $\frac{1}{3}r^2\theta$
 $\frac{1}{3}r^2\theta$
 $\frac{1}{3}r^2\theta$
 $\frac{1}{3}r^2\theta$
= $\frac{2\pi}{3}r^2\theta$
= $\frac{\pi}{12}r^2\theta$

2012 Extension 1 Mathematics Task 2: Solutions— Section B

1. At any point on the curve y = f(x) the gradient function is given by $\frac{dy}{dx} = \frac{x+1}{x+2}$. If y = -1 when x = -1, find the value of y when x = 1, correct your answer to the nearest 3 significant figures.

Solution: $\frac{dy}{dx} = 1 - \frac{1}{x+2},$ $y = x - \ln(x+2) + c.$ $-1 = -1 - \ln 1 + c,$ c = 0. $y = x - \ln(x+2),$ $= 1 - \ln 3 \text{ when } x = 1,$ $\approx -0.0986 (3 \text{ sig. fig.})$

4

3

2. P and Q are centres of the circles, AXB is a straight line. Prove that $\angle APY = \angle BQY$ as marked below.

Solution: $A\widehat{P}Y = 2A\widehat{X}Y \ (\angle \text{ at centre } 2 \times \angle \text{ at circumf.}),$ $360^{\circ} - B\widehat{Q}Y = 2B\widehat{X}Y \ (\angle \text{ at centre } 2 \times \angle \text{ at circumf.}),$ $A\widehat{X}Y + B\widehat{X}Y = 180^{\circ} \ (A\widehat{X}B \text{ is straight}),$ $A\widehat{P}Y + 360^{\circ} - B\widehat{Q}Y = 2 \times 180^{\circ},$ $A\widehat{P}Y = B\widehat{Q}Y,$ $\therefore \text{ reflex } A\widehat{P}Y = \text{ reflex } B\widehat{Q}Y.$

6

3. Evaluate
$$\int_0^{\frac{\pi}{6}} \sec^2 x \tan^8 x. dx$$

Solution:
$$I = \int_{0}^{\frac{1}{\sqrt{3}}} u^{8} du$$
, put $u = \tan x$

$$= \frac{u^{9}}{9} \Big|_{0}^{\frac{1}{\sqrt{3}}}$$
, when $x = \frac{\pi}{6}$, $u = \frac{1}{\sqrt{3}}$

$$= \frac{1}{9} \times \frac{1}{81\sqrt{3}} - 0$$
,
$$= \frac{\sqrt{3}}{2187}$$
.

- 4. Consider the function $f(x) = \frac{\log_e x}{x^2}$.
 - (a) Find the x intercept of the curve.

Solution: $\ln x = 0$ when x = 1, so the x-intercept is at (1,0).

(b) Find the coordinates of the turning point and the point of inflexion.

Find the coordinates of the turning point and the point of inflexion.

Solution:
$$f'(x) = \frac{\frac{x^2}{x} - 2x \ln x}{x^4}, \qquad f''(x) = \frac{x^3 \left(\frac{-2}{x}\right) - 3x^2(1 - 2\ln x)}{x^6},$$

$$= \frac{1 - 2\ln x}{x^3}, \qquad = \frac{-2 - 3 + 6\ln x}{x^4},$$

$$= 0 \text{ when } x = e^{1/2}.$$

$$= \frac{6\ln x - 5}{x^4},$$

$$= 0 \text{ when } x = e^{5/6}.$$

$$\therefore \text{ Maximum } \left(e^{1/2}, \frac{1}{2e}\right), \qquad f''(e^{1/2}) = \frac{-2}{e^2} < 0.$$
Inflexion
$$\left(e^{5/6}, \frac{5}{6e^{5/3}}\right),$$

(c) Hence sketch the curve y = f(x), and label the critical points and any asymptotes.

[2]

3

5. Consider the function $f(x) = x - \sin x$. P(X,1) is a point on the curve y = f(x). Starting with an initial approximation of X = 2, use one application of Newton's Method to find an improved approximation to the value of X, giving the answer correct to 3 decimal places.

Solution:
$$f'(x) = 1 - \cos x$$
.
 $a_1 = 2 - \frac{2 - \sin 2 - 1}{1 - \cos 2}$,
 $\approx 1.936 (3 \text{ dec. pl.})$

6. Prove by Mathematical Induction that $3^{3n} + 2^{n+2}$ is divisible by 5 for all integers $n \ge 1$.

 $S_n = 3^{3n} + 2^{n+2}.$ Solution: Test n = 1, $S_1 = 3^3 + 2^3$, = 27 + 8= 35. \therefore True for n=1. Assume true for n = k, i.e. $S_k = 5p$ where $p \in \mathbb{Z}$. Test n = k + 1, i.e. $S_{k+1} = 5q$ where $q \in \mathbb{Z}$. L.H.S. = $3^{3(k+1)} + 2^{k+1+2}$ $=3^{3k+3}+2^{k+3}$ $= 27.3^{3k} + 2.2^{k+2},$ $= 27 (3^{3k} + 2^{k+2}) - 25 \cdot 2^{k+2},$ = $27S_k - 25 \cdot 2^{k+2},$ = $27.5p - 25.2^{k+2}$ (using the assumption), $= 5(27p - 5.2^{k+2}),$ So, true for n = k + 1 if true for n = k; true for n = 1, and so true for $n = 2, 3, \ldots$, for all $n \ge 1$.

Section C Solutions

- 1.
- (i) Show that there is a solution to the equation $x 2 = \sin x$ between x = 2.5 and x = 2.6.
- (ii) By halving the interval, find the solution correct to 2 decimal places.

Let
$$f(x) = x - 2 - \sin x$$

 $f(2.5) = -0.098472144$
 $f(2.6) = 0.084498628$
As $f(x)$ is continuous and $f(2.5)$, $f(2.6) < 0$ then there is a solution for $2.5 < x < 2.6$

One application of the "halving the interval" gives an approximation as x = 2.55. [This is probably what the question meant for 1 mark]

However, what the question is really asking means that we have to find the correct solution rounded to 2 d.p.

Is
$$x = 2.55$$
 the correct solution rounded to 2 dp? $f(2.55) = -0.007683717$

So a smaller interval containing the solution is 2.55 < x < 2.6 and so a second approximation would be x = 2.575

As f(2.575) = 0.038239727 then a smaller subinterval containing the solution is 2.55 < x < 2.575.

Using the table below, the correct solution to 2 dp is 2.55

а	b	f(a)	f(b)	$f(a) \times f(b)$	midpoint	f (midpoint)
2,5	2.6	-0.098472144	0.084498628	_	2.55	-
2.55	2.6	-0.007683717	8.863738035		2.575	+
2.55	2.575	-0.007683717	8.556317158	_	2.5625	+
2.55	2.5625	-0.007683717	8.405697317	_	2.55625	+
2.55	2.55625	-0.007683717	8.331148842		2.553125	_
2.553125	2.55625	-0.001962081	8.331148842	_	2.5546875	+
2.553125	2.5546875	-0.001962081	8.312590505		2.55390625	<u> </u>

(i) Use the Principle of Mathematical Induction to prove that $\sin(x + n\pi) = (-1)^n \sin x$ for all positive integers n.

Test
$$n = 1$$

LHS = $\sin(x+\pi) = -\sin x$ (3rd quadrant results)
RHS = $(-1)^1 \sin x = -\sin x$

 \therefore true for n=1

Assume true for n = k i.e. $\sin(x + k\pi) = (-1)^k \sin x$ Need to prove true for n = k + 1 i.e. $\sin[x + (k+1)\pi] = (-1)^{k+1} \sin x$

LHS =
$$\sin[x + (k+1)\pi]$$

= $\sin[(x+k\pi) + \pi]$
= $-\sin(x+k\pi)$
= $-(-1)^k \sin x$ [from assumption]
= $(-1)^{k+1} \sin x$
= RHS

So the formula is true for n = k + 1 when it is true for n = k. By the principle of mathematical induction the formula is true for all positive integers.

(ii) If

$$S = \sum_{k=1}^{n} \sin(x + k\pi)$$

for $0 < x < \frac{\pi}{2}$ and for all positive integers n.

Prove that $-1 < S \le 0$.

For $0 < x < \frac{\pi}{2}$, $\sin x > 0$, but $\sin x \neq 1$

$$S = \sum_{k=1}^{n} \sin(x + k\pi)$$

$$= \sum_{k=1}^{n} (-1)^{k} \sin x$$
 [From (i)]
$$= \sin x \times \sum_{k=1}^{n} (-1)^{k}$$

If n is even then $\sum_{k=1}^{n} (-1)^k = 0$ and if n is odd then $\sum_{k=1}^{n} (-1)^k = -1$

$$\therefore -1 < \sin x \sum_{k=1}^{n} (-1)^{k} \le 0$$
 [As indicated $\sin x \ne 1$, so $S \ne -1$]

$$\therefore -1 < S \le 0$$

- 3. Consider the function $f(x) = e^x \left(1 \frac{x}{4}\right)^4$.
 - (i) Find the coordinates of the stationary points and determine their nature.

$$f(x) = e^{x} (1 - \frac{x}{4})^{4}$$

$$f'(x) = e^{x} \times 4(1 - \frac{x}{4})^{3} \times (-\frac{1}{4}) + e^{x} (1 - \frac{x}{4})^{4}$$

$$= -e^{x} (1 - \frac{x}{4})^{3} + e^{x} (1 - \frac{x}{4})^{4}$$

$$= e^{x} (1 - \frac{x}{4})^{3} \left[(1 - \frac{x}{4}) - 1 \right]$$

$$= -\frac{x}{4} e^{x} (1 - \frac{x}{4})^{3}$$

Stationary points occur when f'(x) = 0 i.e. $-\frac{x}{4}e^{x}(1-\frac{x}{4})^{3} = 0$ $\therefore x = 0, 4$

NB $e^x > 0$ for all x, so this has been ignored from the calculations.

\boldsymbol{x}	-1	0	1	3	4	5
<i>y'</i>	$\frac{1}{4}(\frac{5}{4})^3$	0	$-\frac{1}{4}(\frac{3}{4})^3$	$-\frac{3}{4}(\frac{1}{4})^3$	0	$\frac{5}{4}(\frac{1}{4})^3$
	+	0	_	. —		+

$$f(0) = 1$$
$$f(4) = 0$$

- \therefore (0, 1) is a maximum turning point and (4, 0) is a minimum turning point.
- (ii) Sketch the curve y = f(x) and label the turning points and any asymptotes.

As $x \to -\infty$, $f(x) \to 0^+$, and as $x \to \infty$, $f(x) \to \infty$ So the horizontal asymptote is y = 0.

(iii) Hence, prove that
$$\left(\frac{5}{4}\right)^4 \le e \le \left(\frac{4}{3}\right)^4$$
.

$$f(x) = e^{x} (1 - \frac{x}{4})^{4}$$

$$f'(x) = e^{x} \times 4(1 - \frac{x}{4})^{3} \times (-\frac{1}{4}) + e^{x} (1 - \frac{x}{4})^{4}$$

$$= -e^{x} (1 - \frac{x}{4})^{3} + e^{x} (1 - \frac{x}{4})^{4}$$

$$= e^{x} (1 - \frac{x}{4})^{3} \left[(1 - \frac{x}{4}) - 1 \right]$$

$$= -\frac{x}{4} e^{x} (1 - \frac{x}{4})^{3}$$

So from the graph, $f(-1) \le 1$ i.e. $e^{-1}(1 + \frac{1}{4})^4 \le 1$ $\therefore (\frac{5}{4})^4 \le e$

Also from the graph $f(1) \le 1$ i.e. $e(\frac{3}{4})^4 \le 1$

$$\therefore e \leq \left(\frac{3}{4}\right)^{-4}$$

$$\therefore e \leq \left(\frac{4}{3}\right)^4$$

$$\therefore \left(\frac{5}{4}\right)^4 \le e \le \left(\frac{4}{3}\right)^4$$

4. In the diagram, A, B, C and P are points on the circumference of the circle and \triangle ABC is an equilateral triangle. X is a point on the straight line PC such that PX = BX. Prove that PC = PA + PB.

As
$$\triangle$$
 ABC is equilateral then \angle BAC = 60 °

$$\therefore \angle BPX = 60^{\circ}$$

Similarly,
$$\angle APC = \angle ABC = 60^{\circ}$$

$$PX = PB$$
 means that $\angle PBX = 60^{\circ}$

$$\therefore \angle PXB = 60^{\circ}$$

 $\therefore \Delta PXB$ is equilateral and PX = PB = XB

(equal angles opposite equal sides) (
$$\angle$$
 sum $\triangle PXB$)

Now
$$\angle PAB = \angle PCB$$

 $\angle APB = \angle BPX + \angle APC = 120^{\circ}$
 $\angle BXC = 120^{\circ}$

In \triangle *PAB* and \triangle *BXC*

$$PB = XB$$

$$\angle PAB = \angle XCB$$

$$\angle BPA = \angle BXC = 120^{\circ}$$

$$\therefore \triangle PAB \equiv \triangle BXC$$

$$\therefore AP = XC$$

Now
$$PC = PX + XC$$

= $PB + XC$
= $PB + AP$

(angles in the same segment)

(adjacent angles)

(angle sum straight angle, $\angle PXC$)

(proved earlier) (proved earlier)

(proved earlier)

(AAS)

(matching sides of congruent Δs)

$$(PX = PB$$
, sides of equilateral $\triangle PBX$)
 $(AP = XC$, proved above)