14:03 | The Range of Values of the Trig Ratios

Name:	Class:	

Exercise

In the diagram shown:

- ∠ABE is a right angle
- *X* is any position on the ray *BE*
- $\angle XAB = \theta$.
- 1 As *X* moves along the ray *BE*, away from *B*, what happens to the:
 - **a** size of $\angle BAX$?
 - **b** length of BX?
 - **c** length of *AB*?
 - **d** value of the ratio $\frac{BX}{AB}$?
 - e size of tan θ ?

- **2** Considering the above:
 - **a** What is the smallest value of $\tan \theta$ possible?
 - **b** What happens to $\tan \theta$ as θ moves from 0° towards 90° ?
- **3** a What happens to AX as θ moves from 0° towards 90° ?
 - **b** What happens to $\frac{AB}{AX}$ as θ moves from 0° towards 90° ?
 - **c** What are the smallest and largest possible values of $\cos \theta$?
- **4 a** Do BX and AX get closer in value as θ moves from 0° towards 90° ?

6

- **b** Why is AX always bigger than BX?
- **c** What happens to $\frac{BX}{AX}$ as θ moves from 0° towards 90°?
- **d** What are the smallest and largest possible values of $\sin \theta$?

14:03 The Range of Values of the Trig Ratios

1 a It approaches 90°

b It increases.

c It stays constant.

d It increases.

e It increases from 0 to infinity.

2 a 0

b It increases from 0 to infinity.

3 a It continuously increases in length.

b It goes from 1 to 0.

c 0 and 1

4 a Yes

 ${f b}$ Because it is the hypotenuse of the right-angled triangle ABX

c It goes from 0 to 1. d 0 and 1

P