Revision questions

- 26. Find the equation of the parabola with vertex (5, -4) that passes through the point (1, 4).
- 27. Find the equation of the locus of a point that moves so that the ratio of PA to PB is 3:2, where A = (2, 7) and B = (-3, -4).
- 28. Find the equation of the parabola with focus (0, -8) and directrix y = 8.
- 29. Find the equation of the tangent to the curve $x^2 = -4v$

at the point where x = 2. Find the coordinates of the point where this tangent cuts the directrix.

30. Find the centre and radius of the circle whose equation is

$$x^2 - 10x + y^2 + 12y - 3 = 0$$

- 31. Describe the locus of a point moving so that it is always 2 units from the x-axis.
- 32. For the parabola $y^2 = -20x$ find:
 - (a) the coordinates of the focus
 - (b) the equation of the directrix
 - (c) the equation of the axis.
- 33. Find the equation of the locus of a point moving so that it is equidistant from the x-axis and the point (-2, -3).
- 34. For the parabola $x^2 + 4x + 8y = 0$ find:
 - (a) the coordinates of the vertex
 - (b) the coordinates of the focus
 - (c) the equation of the directrix.
- 35. Find the locus of the point moving such that it is always 9 units from the point (-6, 5).

Challenge questions

36. Show that the line x + y + 1 = 0 is a tangent to the parabola

$$x^2 = 4y$$

Find its point of contact P with the parabola and find the equation of the line PF where F is the focus

37. The points A(2, -2) and B(-4, -8) lie on the parabola

The normals at A and B meet at point C. Find the equations of the normals and the coordinates of C.

38. Sketch the region

$$x^2 + y^2 - 4y - 5 \le 0$$

39. Find the equations of the tangents to the parabola

$$x^2 = 8y$$

at points A(-4, 2) and B(8, 8). Find Q, the point of intersection of these tangents. Find the midpoint M of AB and show that the line MQ is parallel to the axis of the parabola.

- 40. Find the equation of the locus of a point P(x, y) given that PA is perpendicular to PB where A = (3, 2) and B = (-5, 1).
- 41. Find the coordinates of the focus and the equation of the directrix for the parabola

$$y=x^2-4x+5.$$

- 42. Find the equation of the locus of a point that is equidistant from the lines L, 3x 4y + 1 = 0, and M, 3x 4y 5 = 0.
- 43. Find the equation of the tangent to the curve $(x-3)^2 = 16y$ at the point where x = 5.
- 44. (a) Find the equation of the circle with diameter AB where A = (0, 6) and B = (4, -2).
 - (b) Show that this circle is the equation of the locus of point P(x, y) moving so that PA is perpendicular to PB.
- 45. A satellite dish is 1.5 m wide and 530 mm deep. Find the position of the focus from the vertex, to the nearest mm.

26. The general parabola has equation:

$$(x - h)^2 = 4a(y - k)$$

where vertex = (h, k) and focal length = a. $(x-5)^2 = 4a(y+4)$

Substitute (1, 4) into the equation:

$$(1-5)^{2} = 4a(4+4)$$

$$16 = 32a$$

$$\frac{1}{2} = a$$

$$(x-5)^{2} = 4(\frac{1}{2})(y+4)$$

$$x^{2} - 10x + 25 = 2(y+4)$$

$$= 2y + 8$$

$$x^2 - 10x - 2y + 17 = 0$$

27. Hint:
$$4PA^2 = 9PB^2$$

 $5x^2 + 70x + 5y^2 + 128y + 13 = 0$

28. Focus =
$$(0, -a) = (0, -8)$$

Directrix:
$$v = a = 8$$

Equation is of the form $x^2 = -4ay$ where a = 8.

So
$$x^2 = -4(8)y$$

 $x^2 = -32y$

29.
$$x + y - 1 = 0$$
, $(0, 1)$

$$30. x^2 - 10x + y^2 + 12y = 3$$

Completing the square:

Completing the square:

$$x^2 - 10x + 25 + y^2 + 12y + 36 = 3 + 25 + 36$$

 $(x - 5)^2 + (y + 6)^2 = 64$

Circle, centre (5, -6) and radius 8.

31. Lines
$$y = \pm 2$$

32. Equation is of the form $y^2 = -4ax$ where a = 5

(a) Focus =
$$(-a, 0) = (-5, 0)$$

(b) Directrix:
$$x = a$$

 $\therefore x = 5$

(c) Axis:
$$y = 0$$

$$33. x^2 + 4x + 6y + 13 = 0$$

$$34. x^{2} + 4x = -8y$$

$$x^{2} + 4x + 4 = -8y + 4$$

$$(x + 2)^{2} = -8(y - \frac{1}{2})$$

(a) Vertex =
$$(-2, \frac{1}{2})$$

(b)
$$4a = 8$$

 $a = 2$

Count down 2 units to the focus:

Focus =
$$(-2, -1\frac{1}{2})$$

(c) Count up 2 units:

Directrix:
$$y = 2\frac{1}{2}$$

35.
$$(x + 6)^2 + (y - 5)^2 = 81$$
 or $x^2 + 12x + y^2 - 10y - 20 = 0$

Challenge questions

36. Solve simultaneous equations:

$$x^2 = 4y \tag{1}$$

$$x + y + 1 = 0 \tag{2}$$

Substitute (3) into (1):

$$r^2 = 4(-x - x)$$

$$x^{2} = 4(-x - 1)$$

$$= -4x - 4$$

$$x^{2} + 4x + 4 = 0$$

$$x^{2} + 4x + 4 = 0$$

$$(x + 2)^{2} = 0$$

$$\therefore x = -2$$

There is only one point of intersection, when x = -2.

: Line is a tangent.

Substitute x = -2 in (3):

From the graph, line PF passes through the focus and is parallel to the x-axis.

 \therefore It has equation y = 1.

$$37. x - 2y - 6 = 0, x + 4y + 36 = 0$$

C = (-8, -7)

38.
$$x^{2} + y^{2} - 4y = 5$$

 $x^{2} + y^{2} - 4y + 4 = 5 + 4$
 $x^{2} + (y - 2)^{2} = 9$

Circle with centre (0, 2) and radius 3. For $x^2 + y^2 - 4y - 5 \le 0$

choose any point inside, say (0, 2):

$$0^2 + 2^2 - 4(2) - 5 \le 0$$

 $-9 \le 0$ (true)

: Region is inside the circle.

- 39. At A: x + y + 2 = 0At B: 2x - y - 8 = 0Q = (2, -4), M = (2, 5) MQ has equation x = 2, which is a line parallel to x = 0 (axis of the parabola).
- **40.** PA has gradient $m_1 = \frac{y_2 y_1}{x_2 x_1}$ $= \frac{y 2}{x 3}$ PB has gradient $m_2 = \frac{y 1}{x + 5}$

For
$$\perp$$
 lines, $m_1m_2 = -1$
that is, $\frac{y-2}{x-3} \times \frac{y-1}{x+5} = -1$

$$\frac{y^2 - y - 2y + 2}{x^2 + 5x - 3x - 15} = -1$$

$$\frac{y^2 - 3y + 2}{x^2 + 2x - 15} = -1$$

$$y^2 - 3y + 2 = -(x^2 + 2x - 15)$$

$$= -x^2 - 2x + 15$$

$$x^2 + 2x + y^2 - 3y - 13 = 0$$

- 41. Focus = $(2, 1\frac{1}{4})$ Directrix: $y = \frac{3}{4}$
- 42. Let P = (x, y) be the moving point. $d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$ Distance P to L: $d = \frac{|3x - 4y + 1|}{\sqrt{3^2 + (-4)^2}}$ $= \frac{|3x - 4y + 1|}{5}$ Distance P to M:

Distance P to M:

$$d = \frac{|3x - 4y - 5|}{\sqrt{3^2 + (-4)^2}}$$

$$= \frac{|3x - 4y - 5|}{5}$$

For P to be equidistant from L and M:

$$\frac{|3x - 4y - 1|}{5} = \frac{|3x - 4y - 5|}{5}$$
that is, $|3x - 4y - 1| = |3x - 4y - 5|$
(i) $3x - 4y - 1 = 3x - 4y - 5$
 $-1 = -5$

in no solution. (ii) 3x - 4y - 1 = -(3x - 4y - 5) = -3x + 4y + 5 6x - 8y - 6 = 03x - 4y - 3 = 0.

43. x - 4y - 4 = 0

44. (a) Centre: midpoint of AB $P = \left(\frac{0+4}{2}, \frac{6+(-2)}{2}\right)$ = (2, 2)Radius = $\frac{1}{2}$ diameter AB. $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(4-0)^2 + (-2-6)^2}$ $= \sqrt{16+64}$ $= \sqrt{80}$ $\therefore \text{ radius} = \frac{1}{2}\sqrt{80}$ $= \frac{1}{2} \times \sqrt{16} \times \sqrt{5}$ $= \frac{1}{2} \times 4\sqrt{5}$ $= 2\sqrt{5}$

Equation: $(x-a)^{2} + (y-b)^{2} = r^{2}$ $(x-2)^{2} + (y-2)^{2} = (2\sqrt{5})^{2}$ $x^{2} - 4x + 4 + y^{2} - 4y + 4 = 4 \times 5$ $x^{2} - 4x + y^{2} - 4y + 8 - 20 = 0$ $x^{2} - 4x + y^{2} - 4y - 12 = 0$

(b) PA has $m_1 = \frac{y-6}{x-0}$. PB has $m_2 = \frac{y+2}{x-4}$ For \perp lines, $m_1m_2 = -1$ $\therefore \frac{y-6}{x-0} \times \frac{y+2}{x-4} = -1$ $\frac{y^2 + 2y - 6y - 12}{x^2 - 4x} = -1$ $y^2 - 4y - 12 = -(x^2 - 4x)$ $= -x^2 + 4x$ $x^2 - 4x + y^2 - 4y - 12 = 0$

45. 265 mm