PROBABILITY

- A. The Meaning of Probability
 - a. Definitions
 - An *outcome* is the result of an experiment or game
 - The sample space is the set of all possible outcomes
 - An event is a group of one or more outcomes
 - The theoretical probability an event occurring is calculated using the formula:

$$P(E) = \frac{number\ of\ favourable\ outcomes}{total\ number\ of\ outcomes} = \frac{n(E)}{n(S)}$$

EXAMPLE 1:

One card is selected at random from a normal deck of playing cards. What is the probability that the card is:

- a. an ace?
- b. a red ace?
- c. a picture card?
- d. a club or a red ace?

HSC Topic 6 Probability & Applications of Probability

- b. The Range of Probabilities
- A probability value can be expressed as a fraction or decimal ranging from 0 to 1
- or as a percentage ranging from 0% to 100%
- $0 \le P(E) \le 1$
- if P(E) = 0 the event is impossible
- if P(E) = 1 the event is certain
 - c. Complementary Events
- If P(E) is the probability that an event will occur then $P(\tilde{E})$ is the probability that the event **will not** occur
- \tilde{E} is called the **complementary** event and $P(E) + P(\tilde{E}) = 1$

$$P(\tilde{E}) = 1 - P(E)$$

 $P(the\ event\ does\ not\ occur) = 1 - P(the\ event\ occurs)$

EXAMPLE 2:

A jar contains 12 red, 7 yellow, 8 white and 13 black jellybeans. Express as a decimal the probability that a jellybean randomly selected from the jar is:

- a. green
- b. black or white
- c. not red
- d. black, yellow or red
- e. not blue

- d. Experimental Probability
- The experimental probability of an event occurring is its relative frequency.

Relative frequency of an event =
$$\frac{frequency of the event}{total frequency}$$

EXAMPLE 3:

A roulette wheel at a casino has 37 numbers, 0 to 36. The results of 250 spins of the wheel are shown in the table.

Outcome	Frequency
0	5
1-9	60
10 – 18	62
19 – 27	64
28 - 36	59

Express your answers to the following questions as percentages (to 1 decimal place where necessary).

- a. What is the experimental probability (relative frequency) of spinning a number from 19 to 27?
- b. What is the calculated probability (theoretical probability) of spinning a number from 19 to 27?
- c. What is the calculated probability of spinning zero?
- d. What is the experimental probability of spinning zero?
- e. What is the experimental probability of spinning a number less than 10?

HSC Topic 6 Probability & Applications of Probability

New Century General Maths Ex 6.01 Page 197

B. Tree Diagrams & Tables

- a. Using a Tree Diagram
- A *tree diagram* allows all the possible outcomes of a multistage event to be listed *systematically*
- It ensures all possible arrangements have been covered
- Branches are used to illustrate the possibilities at every stage or level
- A multistage event consists of two or more events occurring together

EXAMPLE 4:

A coin is tossed three times. Find all possible outcomes (the sample space) by listing them and by drawing a tree diagram.

EXAMPLE 5:

The digits 7, 2, 3 & 6 are written on separate cards and two of them are selected at random to form a two digit number.

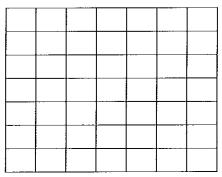
- a. Use a tree diagram to list all possible outcomes
- b. What is the probability that the number formed is divisible by 3?

b. Using a Table

 The outcomes of a two stage event can also be listed systematically in a table

EXAMPLE 6:

A pair of dice are rolled and the sum of the numbers calculated. Use a table to list all possible outcomes and hence find the probability of rolling a sum of ten.



New Century General Maths Ex 6.02 Page 200

HSC Topic 6 Probability & Applications of Probability

C. The Multiplication Principle for Counting

- More advanced counting techniques helps calculate probabilities when the total number of possibilities is very large
- Probability trees and tables are not practical in these cases
- If event A has m outcomes and event B has n outcomes then events A
 & B together have m x n possible arrangements
- Similarly If event A has a outcomes, event B has b outcomes, event C has c outcomes etc then events A, B, C, together have a x b x c x possible arrangements

EXAMPLE 7:

From these lists of given names and surnames determine the number of possible given name – surname combinations.

Given Name		Surname
Alex		Garrett
	Brionne	Hijazi
	Cate	lacono
	Daniel	Johnson
	Erin	Kee
	Fiona	

4

General Maths

EXAMPLE 8:

From this menu calculate the number of different 3-course meals possible.

Entree	Main Course	Dessert
Pumpkin Soup	Cajun Prawns	Pavlova
Calamari Rings	Steak Diane	Black Forest Cake
Potato Wedges	Roast Lamb	Chocolate Mousse
	Chicken Dijon	Mangoes and Ice Cream
	Grilled Perch	

EXAMPLE 11:

EXAMPLE 10:

D. Counting Arrangements

Harry's office has 10 carspaces for employees. In how many different ways can 10 cars be parked in 10 spaces?

HSC Topic 6 Probability & Applications of Probability

Six friends – Rachel, Ross, Chandler, Monica, Pheobe and Joey – stand in line for a group photo. How many possible arrangements of position are there?

EXAMPLE 9:

An internet user password is made up of 6 characters, alphabetic or numeric. How many different passwords are possible?

a. Factorial Notation

- In mathematics factorial notation represents a type of multiplication
- The symbols 4! and 8! are read "4 factorial" and "8 factorial"
- $4! = 4 \times 3 \times 2 \times 1$
- 8! = 8x7x6x5x4x3x2x1
- x! means the product of all the numbers from x down to 1
- The number of ways *n* different items can be arranged is *n*!
- $n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$

• New Century General Maths Ex 6.03 Page 203

EXAMPLE 12:

Suppose the 6 friends from example 10 want to have smaller group photos on a couch that sits 4. How many different photos are possible? This means in how many ways can you arrange 6 people into 4 positions?

EXAMPLE 13:

A girl's school is electing a captain and a vice-captain. There are 5 candidates, Ang, Beth, Cassie, Dasha and Elena.

- a. How many possible pairings of captain and vice-captain are possible?
- b. List the combinations.

HSC Topic 6 Probability & Applications of Probability

E. Counting Unordered Selections

• The number of unordered selections that can be made from n different items when there are r positions is:

No of arrangements =
$$\frac{n \times (n-1) \times (n-2) \times \dots}{r!} [r \text{ terms}]$$

EXAMPLE 14:

Six friends visit a tennis court. How many different doubles teams are possible?

Let the players be denoted by the letters A, B, C, D, E & F.

When the teams are formed remember that AB and BA are the same arrangement, order doesn't matter.

EXAMPLE 15:

Three students are to be selected from a group of 8 to represent the school. How many combinations of 3 students are possible?

6

General Maths

EXAMPLE 16:

In lotto 6 balls are randomly selected from 44 numbered balls. How many different selections of 6 balls are possible?

EXAMPLE 17:

A student council must select 8 junior members and 4 senior members. There are 25 junior candidates and 11 senior candidates.

- a. How many different ways can the 8 junior representatives be chosen?
- b. How many different arrangements of 4 senior representatives exist?
- c. How many different student councils are possible?

HSC Topic 6 Probability & Applications of Probability

- F. Ordered and Unordered Selections
 - You need to be able to distinguish between these two types of selections
 - Ordered selections, called permutations, are arrangements where order within the group is important
 - There are more possible ordered arrangements because ABC, BAC,
 CBA etc are all counted as different
 - Examples of ordered selections include:
 - o first three places in a race
 - o captain and vice-captain in a team
 - o photos arranged on a page in an album
 - Unordered selections, called combinations, are arrangements where order within the group is not important
 - There are *fewer* possible ordered arrangements because ABC, BAC, CBA etc are all counted as *the same*
 - Examples of ordered selections include:
 - o choosing 5 players for a basketball team
 - o selecting 6 numbers for lotto
 - choosing 20 items to be tested

	Arranging	
Arrangements	in	Permutations
	Order	
	Ordered	
	Selections	

Selections	Groupings	Combinations
	Unordered	
	Selections	

New Century General Maths Ex 6.05 Page 210

EXAMPLE 18:

Poker is a card game in which each player is dealt a hand of 5 cards from a normal deck of 52 cards.

- a. How many different hands of 5 cards are possible?
- b. In how many ways can 3 aces be selected from the 4 aces in the deck?
- c. In how many ways can 2 queens be selected from the 4 queens in the deck?
- d. Hence, what is the probability of being dealt a hand with 3 aces and 2 queens?

HSC Topic 6 Probability & Applications of Probability

EXAMPLE 19:

Dan believes that in a 14-horse race 3 of his 5 favourites must come 1st, 2nd and 3rd, in any order. A trifecta is a bet on the first 3 places of a horse race in the correct order.

- a. How many trifectas are possible from 14 horses?
- b. If Dan wants to cover all trifectas of his 5 favourites how many trifecta bets is this?
- c. If all 14 horses are equally likely to win the race what is the probability that Dan will win from one of his bets?

G. Probability Tree Diagrams

- The probabilities of outcomes are listed at every stage on the branches of probability tree diagrams
- To calculate the probability of a particular outcome multiply the probabilities along the branches
- To calculate the probability of an event with 2 or more outcomes add the calculated probabilities together
- for complementary events P(at least one) = 1 P(none)

EXAMPLE 20:

To drive to work Mr Katehos passes through 3 sets of traffic lights. The probability of a red light (including amber) on each light is 0.3. Construct a tree diagram showing all possible arrangements of red and green signals for the 3 sets of lights. Calculate the probability that he meets:

- a. all green lights
- b. one red then 2 green lights
- c. 1 red and 2 green lights in any order
- d. at least 1 red light

HSC Topic 6 Probability & Applications of Probability

EXAMPLE 21:

A student council has 8 Year 10 students, 6 Year 11 and 4 Year 12 students. Two students are selected at random from the council to represent the school at the Lord Mayor's lunch. Construct a probability diagram to show all possible selections and use it to calculate the probability that:

- a. both are from Year 10
- b. there is one from each of Year 10 and Year 11
- c. at least one of the representatives is from Year 12
- d. each representative is from a different year group

• New Century General Maths Ex 6.07 Page 219

H. Expectation

- If the probability of an event *E* is *p* and the experiment is conducted *n* times then the expected number of times *E* will occur is *n* x *p*
- Financial expectation is calculated by multiplying every possible financial outcome by its probability and adding the results together

EXAMPLE 22:

In a lotto draw 6 numbers are selected from 44.

- a. What is the probability that Carlos' luck number 34 is selected?
- b. There are 104 Lotto draws in a year. How many times can Carlos expect his number to be selected over the year?

EXAMPLE 23:

A pair of coins is tossed 300 times. How often would you expect 2 heads to come up?

HSC Topic 6 Probability & Applications of Probability

EXAMPLE 24:

Samantha plays a game involving the tossing of 2 coins. Each game costs 40c to play. She wins \$5 if both coins show a head, \$1 for a head and a tail and loses \$6 if both are tails.

- a. What is Samantha's final expectation for the game?
- b. On average will she make a profit or a loss?

EXAMPLE 25:

Graham rolls a pair of dice in a game that costs \$1 per bet. The table lists the financial outcomes for each event.

- a. Calculate the financial expectations for this game.
- b. Is this game fair? Justify your answer.

Event	Financial Outcome
Doubles	win \$2
Sum of 7	win \$3
Odd Sum (except 7)	win \$1
Even Sum (except doubles)	lose \$1

New Century Maths General Ex 6.08 Page 222

I. Probability Simulations

- A probability simulation is the use of some method to model or simulate a real experiment or situation.
- Simulation can involve:
 - o calculators and computers to generate random numbers
 - o dice, coins, spinners and coloured counters
 - o random number tables

EXAMPLE 26:

For families with 5 children what is the probability that boys outnumber girls? Devise a simulation of this situation and use it to determine whether the probability is more than, less than or equal to ½.

Assuming there is an equal chance of the child being a boy or a girl each time list some simulations that would be suitable using:

- Coins
- Cards
- Dice

HSC Topic 6 Probability & Applications of Probability

EXAMPLE 27:

Four people are randomly selected. What is the probability that two or more of them have birthdays in the same month?

- a. how could you simulate the problem?
- b. run your simulation 100 times and approximate the probability

• New Century Maths General Ex 6.09 Page 229

J. Probability in Testing

- Doctors and scientists use diagnostic tests to determine the existence of a particular disease or condition.
- A positive result means the patient tested has the disease
- A negative result means the patient does not have the disease
- Tests are not 100% reliable so there is a chance the diagnosis is incorrect
- A false positive occurs when the patient receives a positive result but does not have the disease
- A false negative occurs when the patient receives a negative result but has the disease

	Test Result		
	Positive	Negative	
	True Positive	False Negative	
Disease Present	disease present and	disease present but not	
	detected	detected	
	False Positive	True Negative	
Disease Absent	disease not present but	disease not present and	
	wrongly detected	test indicates	

HSC Topic 6 Probability & Applications of Probability EXAMPLE 28:

The following table shows the results of a medical test that determines the presence of coronary heart disease.

	Test Results			
	Positive Negative Total			
Disease Present	231	15	246	
Disease Absent	84	410	494	
Total	315	425		

- a. How many subjects were diagnosed as having the disease?
- b. How many false positive results were there?
- c. How many tests were done?
- d. What percentage (to 2 dp) of:
 - i. positive results were correct?
 - ii. negative results were correct?
 - iii. ali results were incorrect?

EXAMPLE 29:

A lie detector was tested for its reliability over 250 trials and the results presented in a table:

	Test Results		
	Accurate	Not Accurate	Total
True Statements	116	9	
False Statements	108	17	
Total			

- a. Complete the table
- b. How many false statements were accurately detected?
- c. What percentage of test results was accurate?
- d. Is the lie detector better at detecting true or false statements?
- e. How many statements were judged as being false, rightly or wrongly?
- f. What is the percentage probability (to 2 dp) that a statement judged to be true actually was true?

GENERAL MATHS: PROBABILITY

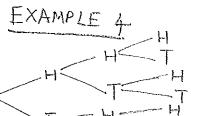
$$d) \frac{1}{4} + \frac{1}{26} = \frac{15}{52}$$

- d) 0
- b) 0.525
- c) 0.7
- d) 0.8

$$\frac{1}{250} = \frac{32}{125}$$

$$d) \frac{5}{250} = \frac{1}{50}$$

e)
$$\frac{65}{250} = \frac{13}{50}$$



EXAMPLE 5

EXAMPLES

		2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	\$_	б	7	8	9	10
5	6	7	8	9	lo	77
6	7	8	9	10	} {	12

PROBABILITY OF ROLLING A SUM OF

$$10 : \frac{3}{36} = \frac{1}{12}$$

EXAMPLE 7

TOTAL COMBINATIONS =

N.O. OF NAMES X NO. OF SURNAMES

 $= 6 \times 5 = 30$ combinations

EXAMPLE 8

= 2 MOITAMISMOD JATOT N.O OF ENTREES

NO DE MAIN COURSES

N.D OF DESSERTS

$$= 3 \times 5 \times 4$$

= 60 possible combinations

EXAMPLE9

26 LETTERS 10 NUMBERS So 36 POSSIBLE CHARACTERS FOR EACH SLOT (36)(36)(36)(36)(36)

\$2176782336 POSSIBLE COMBINATION

EXAMPLE 10

6 people

6x5x4x3x2x1

=720 possible positi

EXAMPLE 11

10 CARS, 10 POSITIONS

10×9×8×7×6×5×4×3×2×1

= 3628 800 possible
positions

EXAMPLE 12

6 PEOPLE INTO 4 POSITIONS

EXAMPLE 13

a) \(\frac{5!}{(5-2)!} = 20 \text{ possible} \\
\text{Lings} \\
\text{Lapt. Wire capt. Capt. Vive capt.} \\
\text{Ang + Beth Beth + Ang.} \\
\text{Ang + Cassie Cassie + Ang.} \\
\text{Ang + Cassie Cassie + Ang.} \\
\text{Ang + Dasha Dasha + Ang.} \\
\text{Reth + Cassie Cassie + Beth.} \\
\text{Beth + Eleng Dasha + Cassie.} \\
\text{Cassie + Dasha Elena + Cassie.} \\
\text{Cassie + Elena Elena + Dasha.} \\
\text{Dasha + Elena Elena + Dasha.} \

20 possible combinations.

EXAMPLE 14 EXAMPLE 17 6 Friends Doubles pair of 2. NO ORDER. 81 (52-8) r=2 , n=6. b) 11! 4!(11-4)! = 330 => 6×5 2×1 => 15 possible doubles formations EXAMPLE 15 c) 330×1081575 = 35 6919750 Combination of 3 students possible, student Councils. 3x2x1 = S6 possible Combinations EXAMPLE 16 44x 43 x 42 x 41 x 40 x 39 6×5×4×3×2×1 This can be rewritten in combinationic form 6! (44-6)! = 7059052 possible

EXAMPLE 18

EXAMPLE 20

a)
$$52!$$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)!$
 $5!(52-5)$

2!(2!) = 6

2!(2!) = 6

C) | Red, 2 Green, any order

0.44

2598960 | 108290 | 441/6

EXAMPLE 19 | 0) At least | Red means

NOT ALL GREEN

1-0.343 = 0.657=

3! (14-3)! = 364 possible

trifedas

c)
$$\frac{3!}{3!}$$
 (5-3)! = 10 possible

trifedas

c) $\frac{10}{364}$ = $\frac{5}{182}$ he will wan one

of his bets

Drawing a probability table EXAMPLE 23 THE PROBABILITY OF 2 HEADS TO APPEAR WIED 2 COINS ARE TOSSED IS 0.25 /25% H=1350%. Chance of solly doubles - 1 T-287, Chance of som 7 = 1/5 Chance of odl som that 7) = 1/5 So the expected probability, chang of enarum (no duble) = } is 75 times for 2 heads to appear EXAMPLE 24

If we consider the \$1 bet to be along, this gives us SAMANTHA HAS A Douber - win \$1 25% chance of winning \$4.60 * Sum 7 - Win \$2 50% chance of winning \$0.60 * Even sum - win not 20% of winning \$0.60 * Even sum - lose \$ odd sam - win nothing 25% chance of 10 sing \$6.40 * a) CONSIDER THE EVENT WHERE * Taken into consideration 40x fee. b) CONSIDER THE EVENT WHERE 100 GAMES that free will be SO GAMES ARE PLAYED Scientific probability dictates that Samuella Scientific promoning will win (25x4.6)+(50x0.6)
giving 10 doubles, 10 sum7 20 odd san and 20evin but lose - (25x 6.4) 15+20+0+20(-2) This gives a loss of \$15 over =, -10, So Finançial expectations give at a loss So on average, she will make aloss shore to win. As Grynan Loss morey

EXAMPLE 26

WITH COINS FLIP A COIN, SET EACH FACE MONTH IS OF THE COINTS A GENDER. UITH CARDS

(1) 6 ≈ 59.3% SHUFFLE A DECK OF CARDS AND PICK 5 FROM RANDOM POSITIONS

SO AT LEAST 2 15 WITHIN THE DECK, SET A PARTICULAR 1-59.3% = 40.67%. CARD COLOUR TO A GENBER which is the scientific TOSS A DICE, SET A NUMBER THRESHOLD 2 will shore the same ie. 1-3 FOR BOY 4-6 FOR GIRLS birthday.

SO THE PROBABILITIES THAT

NO & PAIRS SHARE THE SAME

[THE SPLIT MUST BE EQUAL] EXAMPLE 27

THIS IS AM EXAMPLE OF THE BIETLIONY PARADOX.

4x3 = 6 PAIRS (2 OR MORE =) }

AT LEAST 2. }

A) RANDON

a) RANDOM NUMBER THE PRUBABILITY THAT ANY GENFULTUR FROM GIVEN PAIR DOES NOT HAVE 1-12, Repeat by THE SAME BIRTHDAY IS times and note dain $1 - \frac{1}{365} = \frac{364}{365} \approx 99.7\%$ any repetitions b) TRY THU VIMILLE

SO WITH 6 PAIRS, THE PRIBABILITY THAT MI PAIRS SHARE THE SAME BIRTHDAY. THE SAME CONCEPT APPLES TO MONTH 1-12=11=> = 91.67% EXAMPLE 28

- a) 246
- 6) 84
- c) 740 Tests
- d)173.3%
- ii) 96.5%
- iii) 13.4%

EXAMPLE 29

9)

}	TEST RESULTS			
	Accorate	NOT PATALOR	TOTAL	
TRUE STATEMENTS	116	9	125'	
FALSE STATEMENTS	108	17	125	
TOTAL	224	26		

- 5) 108
- c) 89.6%
- d) For True statements

sacress rate = 115 = 92.8%

for Folse statements

saccess rate = 108 = 86.4%

Better at detecting time statements e) 108+9=117

- - = 116+17=133

f) Total Tone Judgements success rate = 116 = 87.22%