Further Practice: Depreciation

Remember: all questions match the numbered examples on pages 38-48.

A truck was bought for \$78 000 six years ago. The table gives the value of the truck at the end of each of those six years.

Year	Value	Year	Value
1	\$73 320	· 4	\$63 327
2	\$69 654	5	\$60 541
3	\$66 311	6	\$58 119

- a What is the value at the end of four years?
- b By how much has the value of the truck decreased at the end of five years?
- What percentage of its original value did the truck lose in the first year?

The graph shows the value of a sewing machine at the 30th of June each year.

- a What was the value at 30/6/2005?
- How much was the loss in value in the financial year from 1/7/2003 to 30/6/2004?
- c What percentage of its original value is the sewing machine worth at 30/6/2007?
- d What percentage of its original value did the machine lose in the first two years?

Gareth is using the rule $S = 25(t^2 - 16t + 80)$ to give the value, \$S, of his pump at the end of t years.

- a What is the purchase price of the pump?
- b By how much had the pump depreciated at the end of three years?
- c What percentage of the original value was the salvage value at the end of eight years?
- d Find S when t = 9.
- Gareth claims that the rule will only work for 8 years. Use the answer to part d in explaining why Gareth is correct.

Rochelle estimates that her scooter, originally valued at \$7200, is decreasing in value by \$800 every year.

- a What will be the value after one year?
- b What will be the value after two years?
- c Sketch a graph of the value of the scooter over
- d After how many years will the scooter be worthless?

A tool was purchased for \$3700. Find its value after six years if \$360 depreciation is allowed every year.

A forklift was purchased for \$6400 and is being depreciated by \$360 per year.

- a What is the value after eight years?
- b After how many years will the value of the forklift fall to \$1000?

A six-year-old machine is currently valued at \$4625. If it has been depreciated by \$675 per year, find its purchase price.

A van, originally purchased for \$24 500, is being depreciated by the straight-line method. Find the amount of depreciation allowed per year if the salvage value of the machine is \$15 700 after eight years.

A chainsaw, originally valued at \$1080, is being depreciated by \$90 per year.

- a What is the salvage value of the chainsaw after six years?
- b What percentage of the original value is the value after six years?
- c What percentage of the original value has been lost after nine years?

A truck is being depreciated at the rate of 8% per year. The purchase price of the truck was \$110 000.

- a Find the amount of depreciation allowed in the first year.
- b What is the value of the truck at the end of the first
- c Find the amount of depreciation allowed in the second year.

- A car is being depreciated using the declining-balance method, at 12% p.a. If its purchase price was \$42 000, find its value to the nearest one hundred dollars, after seven years.
- A cement mixer was bought for \$1400 three years ago. If it is being depreciated at 8% p.a., how much has it depreciated in value over that time?
 - A machine was bought for \$76 000. It is being depreciated using the declining-balance method by 12.5% p.a.
 - a Find the salvage value, to the nearest dollar, at the end of five years.
 - b Find the salvage value, to the nearest dollar, at the end of six years.
 - c Find the amount of depreciation allowed in the 6th year.
- Find the amount of depreciation allowed for the fourth year if a bus is being depreciated, using the declining-balance method, at 9% per year and the purchase price was \$56 000.
- The current value of a set of tools is \$3600. Find the purchase price of the tools if they have been depreciated at 8% p.a. and they are six years old.
- A machine, bought for \$43 000 three years ago, is currently valued at \$26 400. Find the rate of depreciation allowed if the machine has been depreciated using the declining-balance method.
- An asset is being depreciated using the declining-balance method. The rate of depreciation is 12.5% p.a. If the purchase price was \$29 000 and the current value is \$9965, find the age of the asset.
- A car was bought for \$26 000 and is depreciating by \$1300 per year. Sketch a graph of the salvage value of the car over time.
- The graph shows the value of a machine over time.

- a What is the value after 12 years?
- b By how much is the machine depreciating each year?

- c When is the value \$9000?
- d After how many years is the machine halved in value?
- The graph shows the value of an asset, which is depreciated using the declining-balance method, over the first ten years.

- a What is the value after three years?
- b When is the value of the asset \$8000?
- c By what percentage is the value decreasing each period?
- A tractor is being depreciated so that its salvage value, S, at time n years is given by $S = \$75\ 000(0.92)^n$.
 - a Draw up a table of values with whole number values of *n* from 0 to 12 and complete to give the value of *S* to the nearest \$100.
 - b Plot the points on a grid.
 - c Use the graph to find the approximate time when the tractor will be worth \$34 000.
- The graph shows the value of a machine over time, if it is depreciated at different rates.

- a What was the purchase price?
- b What is the value of the machine after four years if it is depreciated at 20%?
- c If the machine is depreciated at 10%, after how many years will it halve in value?
- d If it is depreciated at 15%, how much did the machine lose in value in the 2nd year?
- e What is the difference in salvage value after six years if the machine is depreciated at 15% or 20%?

A va a I

i b I r f

E E V Y

A m usin depi depi depi

> а г ь ц

An a is de amo Dravover

A m usin depi the

Lisa busi depi

> Itei Wa Dri Vai

a T
c
v
b /
c T

d \(\)

A sr. begi sold asse metl d in

d, over

{ each

ge value,

ive the

ie when

· time, if

 $)^n$.

.ber

A van is bought for \$32 500.

a If it is depreciated by the straight-line method with depreciation of \$2700 allowed per year, what will it be worth in five years?

- b If it is depreciated using the declining-balance method at 9% p.a., what will it be worth in five years? (Give the answer to the nearest one hundred dollars.)
- c By which method of depreciation will the salvage value of the car be higher after six years? Justify your answer.
- A machine is purchased for \$35 000. If depreciated using the straight-line method, the amount of depreciation allowed each year would be \$2750. If depreciated using the declining-balance method, the depreciation rate is 5% per year.
 - a Find the difference in the salvage values after three years using the two methods.
 - b Under which method will the depreciation be greater after five years?

An asset, the original value of which was \$61 000, is depreciating using the straight-line method. The amount of depreciation allowed per year is \$5940. Draw up a table to show the salvage value of the asset over the first six years.

A machine bought for \$80 000 is being depreciated using the declining-balance method. The rate of depreciation is 10% per year. Draw up a table to show the value of the machine for the first five years.

Lisa is drawing up a table giving the value of her business assets over the last year. All of the assets are depreciated using the declining-balance method.

Item	Beg. value	Depr.	Final value
Washers	\$23 500	\$3525	\$19 975
Driers	\$16 800		
Van		\$1240	

- a The driers are depreciating at 12.5% p.a. Find the depreciation allowed during the year and the final value of the driers.
- b At what rate are the washers depreciating?
- c The van is being depreciated at 8% p.a. What was its final value?
- d What is the total depreciation?
- e What is the final value of all the assets?

A small business has assets totalling \$19 260 at the beginning of the financial year and has not bought or sold any during the year. For taxation purposes the assets are depreciated using the declining-balance method at 25% p.a.

- a Find the amount of depreciation allowed as a tax deduction.
- b Find the value of the assets at the beginning of the next financial year.

A contractor depreciates his equipment using the declining-balance method. He has drawn up the following table so that he can calculate the total depreciation.

Item	Beg. value	Depr. rate	Depr. amount	Final value
Van	\$12 700	15%		
Trailer	\$3 025	7.5%		
Compressor	\$3 760	10%		
Ladders	\$2 400	12.5%		
Cleaners	\$5 112	8%	•	
Tools	\$9 378	10%		
Computer	\$4 287	18%		

- a Complete the table, giving each answer correct to the nearest dollar.
- b What is the total amount of depreciation that can be claimed this year?
- c How much depreciation can be claimed on the tools next year?

Some assets of a business are depreciated by the straight-line method and some by the declining-balance method.

Item	Туре	Amount/ rate	Initial value
Furniture	Straight-line	\$1250	\$17 560
Van	Declining-balance	15%	\$14 320
Computers	Declining-balance	20%	\$10 980
Library	Straight-line	\$3240	\$25 270

- a What is the total amount of depreciation that can be claimed?
- b If the business is paying tax at the rate of 20 cents in the dollar, how much tax will be saved by claiming the depreciation?

Nadia bought a sewing machine for her upholstery business for \$11 780, fifty days before the end of the financial year. If the machine is depreciated using the straight-line method, with the amount of depreciation being 12% of the purchase price, find the amount of depreciation that can be claimed in the financial year.

Go to p 284 for Quick Answers or to pp 305–7 for Worked Solutions

fter six % or 20%

ur years i

er how

1 the

Unit 1: Financial Mathematics Chapter 3: Depreciation

Challenge: Depreciation

A generator was purchased for \$2700 and is being depreciated by the straight-line method. The amount of depreciation per year is 9% of the original price. Find the value of the generator after five years. Hint 1

A tractor was purchased for \$70 000 twelve years ago. Its current value is \$29 300. Find the rate of depreciation, given that it is being depreciated by the declining-balance method. Hint 2

A pump and irrigator package was bought for \$24 000. If the equipment is depreciated by 8% p.a., find the amount of depreciation allowed in the second year. Hint 3

The graph shows the salvage value of an asset if it is depreciated by the straight-line method and by the declining-balance method.

How much is the depreciation per year under the straight-line method?

At what percentage is the asset depreciating under The s the declining-balance method? Hint 4

c After how many years will the value be the same under both methods? Hint 5

The table shows the items that can be depreciated for taxation purposes by a small business.

Item	Beg. value	Method	Rate/amount
Mower	\$13 590	Declining-balance	e 12%
4-wheel bike	\$8 700	Declining-balance	e 15%
Fertiliser spreader	\$2 657	Straight-line	\$234
Pump	\$6 200	Declining-balance	e 18%

Find the amount of depreciation that can be claimed as a tax deduction. Hint 6

A four-year-old machine is valued at \$7830. It has been depreciated by 15% per year using the declining-balance method. Find the purchase price. Hint 7

To approximate the value of her rotary hoe, Monica is using the rule $v = 19(t^2 - 27t + 180)$ where v is the value at time t years.

What was the original value of the rotary hoe? Hint 8

b Monica says that the rule only works for the first twelve years. Explain why Monica is correct. Hint 9

Go to p 284 for Quick Answers or to p 308 for Worked Solutions

- Hint 1: A fixed amount is subtracted each period, not a percentage. You will first need to find this fixed amount.
- Hint 2: The rate could be found by solving an equation but it could also be found using a calculator and trial and error.
- Hint 3: Find a percentage of an amount, twice.
- Hint 4: How much does it depreciate (with the declining-balance method) in the first year? What is this as a percentage of the original value?
- Hint 5: Continue the graphs, using the information found in parts a and b.
- Hint 6: Find the amount of depreciation for each item and then the total depreciation.
- Substitute the given values into the formula and solve an equation.
- Hint 8: What is the value when t = 0? Hint 9: What is the value when t = 12?

Key

🛮 Depre

The d

The s

decre

Subst of de

The g

The to the sa

The d it dec

Subst rate o

The gr methc

The re will be value straigl

Tables of dep numbe

Becau:

Solutions

Ch 3: Depreciation Further Practice p49

Yea

Year	Value	Year	Value
1	\$73 320	4	\$63 327
2	\$69 654	5	\$60 541
3	\$66 311	6	\$58 119

- **a** Value at end of 4 years = \$63 327
- b Value at end of 5 years = \$60 541 Loss in value = \$78 000 - \$60 541 = \$17 459
- C Value at end of 1 year = \$73 320 Loss in value = \$78 000 - \$73 320 = \$4680 % loss = $\frac{$4680}{$78\,000} \times 100\%$
- 2 a The value at 30/6/05 is \$280.

b Value at 30/6/03 = \$420 Value at 30/6/04 = \$340 Loss in value = \$420 - \$340 = \$80

The loss in value in the year was \$80.

Coriginal value = \$750 Value at 30/6/07 = \$195 % of original value = $\frac{$195}{$750} \times 100\%$

The sewing machine is worth 26% of its original value at 30th June 2007.

d Loss in value = \$750 - \$500= \$250% loss in value = $\frac{$250}{$750} \times 100\%$ = 33.33333 ...%

The sewing machine lost $33\frac{1}{3}\%$ of its value in the first two years.

- a $S = 25(t^2 16t + 80)$ When t = 0, $S = 25(0^2 - 16 \times 0 + 80)$ = 2000The purchase price of the pump was \$2000.
 - b When t = 3, $S = 25(3^2 - 16 \times 3 + 80)$ = 1025 It is worth \$1025 after 3 years. Depreciation = \$2000 - \$1025

= \$975 The pump has depreciated by \$975 in the first three years.

When t = 8, $S = 25(8^2 - 16 \times 8 + 80)$ = 400

The value of the pump after 8 years is \$400.

% of original value = \$\frac{\$400}{\$2000} \times 100% = 20%

- d When t = 9, $S = 25(9^2 - 16 \times 9 + 80)$ = 425
- e The value when t = 9 is higher than the value when t = 8. The value of the pump is not likely to increase so the rule no longer works.
- a The value after 1 year = \$7200 \$800 = \$6400
 - b After another year, value = \$6400 - \$800 = \$5600

d .The scooter is worthless after 9 years.

- V_0 = \$3700, D = \$360, n = 6 $S = V_0 - Dn$ = \$3700 - \$360 × 6 = \$1540 The value after six years is \$1540.
- a $V_0 = 6400 , D = \$360, n = 8 $S = V_0 - Dn$ $= $6400 - 360×8 = \$3520After eight years the value will be \$3520.
 - b S = \$1000, $V_0 = \$6400$, D = \$360 $S = V_0 - Dn$ $\$1000 = \$6400 - \$360 \times n$ \$360n = \$6400 - \$1000 \$360n = \$5400 n = 15After fifteen years the value of the forklift will fall to \$1000.
- S = \$4625, D = \$675, n = 6 $S = V_0 - Dn$ $\$4625 = V_0 - \675×6 $\$4625 = V_0 - \4050 $V_0 = \$4625 + \4050 = \$8675The purchase price was \$8675.
- S = \$15700, V_0 = \$24500, n = 8 S = V_0 - Dn\$15700 = \$24500 - $D \times 8$ 8D = \$24500 - \$15700 = \$8800 D = \$1100 The amount of depreciation allowed

The amount of depreciation allowed per year is \$1100.

a $V_0 = 1080 , D = \$90, n = 6 $S = V_0 - Dn$ $= $1080 - 90×6 = \$540After six years, the salvage value

is \$540.

b % of original value = $\frac{$540}{$1080} \times 100\%$ = 50%

After six years the chainsaw is worth 50% of its original value.

After 9 years the chainsaw has depreciated by $9 \times \$90 = \810 $\% \log = \frac{\$810}{\$1080} \times 100\%$

= 75%
After nine years, 75% of the original value has been lost.

- a Depreciation in 1st year
 - = 8% of \$110 000
 - = \$8800
 - b Value at end of 1 year
 - = \$110 000 \$8800
 - = \$101 200
 - c Depreciation in 2nd year
 - = 8% of \$101 200
 - = \$8096
- $V_0 = $42\,000, \quad r = 0.12, \quad n = 7$

$$S = V_0 (1 - r)^n$$

- =\$42 000(1 0.12)⁷
- = \$17 164,375 05 ...
- = \$17 200 (nearest hundred dollars)

After 7 years the car is worth approximately \$17 200.

- $V_0 = \$1400, \quad r = 0.08, \quad n = 3$ $S = V_0 (1 - r)^n$
 - =\$1400(1-0.08)³
 - = \$1090.1632
 - =\$1090 (nearest dollar)

Depreciation = \$1400 - \$1090 = \$310

The cement mixer has depreciated by \$310, to the nearest dollar, in that time.

- a $V_0 = $76\,000, r = 0.125, n = 5$
 - $S = V_0 (1-r)^n$
 - $= $76\,000(1-0.125)^5$
 - = \$38 981.0791 ...
 - = \$38 981 (nearest dollar)
 - **b** $V_0 = $76\,000$, r = 0.125, n = 6
 - $S = V_0 (1-r)^n$
 - $= $76\,000(1-0.125)^6$
 - = \$34 108.444 21 ...
 - = \$34 108 (nearest dollar)
 - C Depreciation = \$38 981 \$34 108 = \$4873
- Value at end of 3rd year:

 $V_0 = $56\,000, \quad r = 0.09, \quad n = 3$

$$S = V_0 (1-r)^n$$

- =\$56 000(1 0.09)³
- =\$42 199.976
- = \$42 200 (nearest dollar)

Depreciation = 9% of \$42 200

= \$3798

The amount of depreciation allowed during the fourth year is \$3798.

- S = \$3600, r = 0.08, n = 6 $S = V_0 (1-r)^n$
 - $3600 = V_0(1 0.08)^6$
 - $\$3600 = V_0 \times 0.606355001...$
 - $V_0 = $3600 \div 0.606355001...$
 - =\$5937.116 033 ...
 - = \$5937 (nearest dollar)

The purchase price of the tools was \$5937.

16 S = \$26400, $V_0 = 43000 , n = 3

$$S = V_0 (1 - r)^n$$

$$26 400 = 43 000(1-r)^3$$

$$(1-r)^3 = \frac{$26\,400}{$43\,000}$$

= 0.613 953 488 ...

$$1-r=\sqrt[3]{0.613953488...}$$

- = 0.849 920 863 ...
- = 0.85 (2 d.p.)
- r = 1 0.85
- =0.15

The machine has depreciated at 15% p.a.

 $S = $9965, V_0 = $29000, r = 0.125$

$$S = V_0 (1-r)^n$$

\$9965 = \$29 000(1 - 0.125)"

$$$9965 = $29\,000(0.875)^{7}$$

[A few values are given to illustrate the method. Any values of *n* could have been used in the process.]

Try
$$n=5$$
,

\$29 000(0.875)⁵ = \$14 874.359 13 ...

Try
$$n=10$$
,

\$29 000(0.875)¹⁰ = \$7629.191 709 ...

Try
$$n = 7$$
,

 $$29\ 000(0.875)^7 = $11\ 388.181\ 21 \dots$

Try
$$n=8$$
,

\$29 000(0.875)8 = \$9964.658 558 ...

The machine is 8 years old.

 $V_0 = \$26\ 000, \ D = \1300

8 10 12 14 16 18 20 t (years)

- a When t = 12, S = 4500After 12 years, the value of the machine is \$4500.
- b It depreciates by \$13 500 in 18 years.
 Depreciation per year = \$13 500 ÷ 18
 = \$750
 It is depreciating by \$750 per year.

c When S = 9000, t = 6

- When S = 9000, t = 6The value is \$9000 after six years.
- d The machine halved in value after nine years.

- **a** After 3 years the value is about \$15 000.
- **b** The value of the asset is \$8000 after seven years.
- c When t = 0, $v = $25\,000$ When t = 1, $v = $21\,250$ Depreciation = \$25 000 - \$21 250 = \$3750

% depreciation =
$$\frac{\$3750}{\$25000} \times 100\%$$

= 15%

It is decreasing in value by 15% per year.

21 a $S = $75\,000(0.92)^n$

n	S
0	\$75 000
1	\$69 000
2	\$63 500
3	\$58 400
4	\$53 700
5	\$49 400
6	\$45 500
7	\$41 800
8	\$38 500
9	\$35 400
10	\$32 600
11	\$30 000
12	\$27 600

c The tractor would be worth \$34 000 after nine and a half years.

a The purchase price was \$4000.

- b After four years depreciation at 20% the machine is worth \$1650.
- c At 10% depreciation, the machine halves in value after about 7 years.
- d At 15% depreciation the machine lost about \$500 in the second year.
- e After six years there is about \$450 difference in salvage value if depreciated at 15% or 20%.

a
$$V_0 = \$32500$$
, $D = \$2700$, $n = 5$
 $S = V_0 - Dn$
 $= \$32500 - \2700×5
 $= \$19000$

If depreciated by the straight-line method the van will be worth \$19 000 after 5 years.

b
$$V_0 = $32500, r = 0.09, n = 5$$

 $S = V_0 (1 - r)^n$
= \$32500(1 - 0.09)⁵
= \$20281.04472...
= \$20300 (nearest \$100)

c After a further year under the straightline method of depreciation, the van will lose a further \$2700 in value. Salvage value = \$19 000 - \$2700

= \$16 300

Under the declining-balance method, the car will lose a further 9% of its value.

Depreciation = $0.09 \times 20300 =\$1827

Salvage value = \$20 300 - \$1827 =\$18473

The car will be worth more after six years using the declining-balance method.

a Straight-line method:

$$V_0 = $35\,000, D = $2750, n = 3$$

 $S = V_0 - Dn$

= \$35 000 - \$2750 \times 3

= \$26 750

Declining-balance method:

$$V_0 = $35\,000, r = 0.05, n = 3$$

$$S = V_0 (1 - r)^n$$

= \$35 000(1 - 0.05)³

= \$30 008.125

= \$30 008 (nearest dollar)

=\$3258

The difference in depreciation is \$3258, to the nearest dollar.

b
$$V_0 = $35\,000$$
, $D = 2750 , $n = 5$

$$S = V_0 - Dn$$

= \$35 000 - \$2750 × 5

=\$21 250

 $V_0 = $35\,000, r = 0.05, n = 5$

$$S = V_0 (1-r)^n$$

 $= $35\,000(1-0.05)^5$

= \$27 082,332 81 ...

= \$27 082 (nearest dollar)

The machine has less value under the straight-line method, so the depreciation will be greater with this method.

$$V_0 = $61\,000, D = $5940$$

-	Year	Beginning value	Depreciation	Final value
-	1	\$61 000	\$5940	\$55 060
	2	\$55 060	\$5940	\$49 120
	3	\$49 120	\$5940	\$43 180
Ì	4	\$43 180	\$5940	\$37 240
	5	\$37 240	\$5940	\$31 300
	6	\$31 300	\$5940	\$25 360

$$V_0 = $80\ 000, \ r = 0.1$$

v			
Year	Beginning value	Depreciation	Final value
1	\$80 000	\$8000	\$72 000
2	\$72 000	\$7200	\$64 800
3	\$64 800	\$6480	\$58 320
4	\$58 320	\$5832	\$52 488
5	\$52 488	\$5249	\$47 239

27	Item	Beg. value	Depr.	Final value
	Washers	\$23 500	\$3525	\$19 975
	Driers	\$16 800		
	Van		\$1240	

a Driers: Depreciation = $0.125 \times 16800 =\$2100Final value = \$16 800 - \$2100

b Washers:

Depreciation rate =
$$\frac{$3525}{$23500} \times 100\%$$

= 15%

= \$14 700

c Van: 8% is \$1240 1% is \$155 100% is \$15 500 Beginning value = \$15 500 Final value = \$15 500 - \$1240 =\$14 260

d Total depreciation = \$3525 + \$2100 + \$1240= \$6865

e Value of assets = \$19 975 + \$14 700 + \$14 260 = \$48 935

28 a Depreciation = 25% of \$19 260 =\$4815

The amount of depreciation is \$4815.

beginning of the next financial year.

b Salvage value = \$19 260 - \$4815 = \$14 445 The assets are worth \$14 445 at the

29	a	Item	Beg. value	Depr. rate	Depr. amount	Final value
•		Van	\$12,700	15.0%	\$1905	\$10795
		Trailer	\$3 025	7.5%	\$227	\$2 798
		Compressor	\$3 760	10.0%	\$376	\$3 384
		Ladders	\$2 400	12.5%	\$300	\$2 100
		Cleaners	\$5 112	8.0%	\$409	\$4 703
		Tools	\$9 378	10.0%	\$938	\$8 440
		Computer	\$4 287	18.0%	\$772	\$3 515

b Depreciation = \$1905 + \$227 + \$376 + \$300 + \$409 + \$938 + \$772 = \$4927

c Depreciation = 10% of \$8440 =\$844

30

Item	Туре	Amount/ rate	Initial value
Furniture	Straight-line	\$1250	\$17 560
Van	Declining-balance	15%	\$14 320
Computers	Declining-balance	20%	\$10 980
Library	Straight-line	\$3240	\$25 270

a Depreciation on van = 15% of \$14 320

=\$2148

Depreciation on computers

= 20% of \$10 980

= \$2196

Total depreciation = \$1250 + \$2148 + \$2196 + \$3240

=\$8834

b Tax savings = $0.2 \times 8834 = \$1766.80 An amount of \$1766.80 tax will be saved.

Depreciation = $\frac{50}{365} \times 0.12 \times 11780 = \$193.643 8356 =\$194 (nearest dollar) Nadia can claim \$194 as a tax deduction.

$$V_0 = \$2700, D = \$243, n = 5$$

$$S = V_0 - Dn$$

$$= \$2700 - 5 \times \$243$$

$$= \$1485$$

$$V_0 = $70\ 000, S = $29\ 300, n = 12$$

$$S = V_0 (1-r)^n$$

$$$29\ 300 = $70\ 000 (1-r)^{12}$$

$$(1-r)^{12} = 0.418\ 571\ 428\ ...$$

$$r = 0.07$$

[Using estimation and refinement.] The rate of depreciation is 7%.

$$V_o$$
 = \$24 000
Depreciation in 1st year = 8% of \$24 000
= 0.08 × \$24 000
= \$1920
Value at beginning of second year
= \$24 000 - \$1920
= \$22 080
Depreciation in 2nd year

 $= 0.08 \times $22 080$ = \$1766.40

b Depreciation in first year = \$1000
Rate of depreciation =
$$\frac{$1000}{$10000} \times 100\%$$

= 10%

c After 12 years.

$$S = \$7830, r = 0.15, n = 4$$

 $S = V_0(1-r)^n$
 $\$7830 = V_0(1-0.15)^4$
 $= V_0(0.85)^4$
 $V_0 = \$7830 \div (0.85)^4$
 $= \$14999.8204 ...$
 $= \$15000$ (nearest dollar)

a
$$v = 19(t^2 - 27t + 180)$$

When $t = 0$,
 $v = 19(0^2 - 27 \times 0 + 180)$
= 3420
The original value was \$3420

b When
$$t = 12$$
,
 $v = 19(12^2 - 27 \times 12 + 180)$
 $= 0$

The value of the rotary hoe is \$0 after twelve years. It cannot be valued at less than \$0 so this model for depreciation can work for at most 12 years.