Topic Test: Applications of Trigonometry

Remember: these are HSC-type questions.

Time allowed: 40 minutes

(Suggested time: 15 minutes)

Choose the correct answer (A, B, C or D) for each question. One mark each

Referring to the diagram, which statement is correct?

A
$$\sin \theta = \frac{p}{r}$$

B
$$\cos \theta = \frac{r}{p}$$

C
$$\tan \theta = \frac{q}{r}$$

D none of these

 $\cos \theta = ?$

$$A^{\frac{1}{2}}$$

$$B = \frac{5}{9}$$

$$B \frac{5}{8} \quad C \frac{1}{2}$$

$$D \frac{11}{14}$$

In order to find the value of x in each of these triangles, which rule should be used?

- A sine rule in both
- B sine rule in I, cosine rule in II
- C cosine rule in I, sine rule in II
- D cosine rule in both

Find the area of the paddock to the nearest square metre.

- A 2890 m²
- B 7008 m²
- C 5006 m²
- D 4380 m²

Town P is 32 km from Q on a bearing of 025°. Town R is 19 km from Q on a bearing of 143°. Which diagram best represents this information?

Use the sine rule to find the size of angle A to the nearest degree.

D 27° C 32°

Use the cosine rule to find the length of side AB. Give the answer correct to one decimal place.

- A 7.6 m
- B 5.5 m
- C 10.1 m
- D 2.3 m

B is due east of A. $\angle CAB = 30^{\circ}$ and $\angle CBA = 40^{\circ}$. What is the bearing of B from C?

A 110° C 130° B 120° D 140°

From the top of a building, the angle of depression of an object on the ground, 300 metres from the base of the building on level ground, is 40°. Which expression will find the height (h m) of the building?

A 300 tan 40°

B 300 tan 50°

$$C \frac{300}{\tan 40^{\circ}}$$

A block of land has been surveyed and a rough sketch and notebook entries are given. What is the area of the land?

C 3950 m²

B 3250 m²

D 5225 m²

Part B

(Suggested time: 25 minutes)

Show all working.

A, B, C and D are four towns. A is 83 km from D on a bearing of 015° and D is 121 km due west of C. B is 154 km from A and 97 km from C.

Find the size of $\angle ADC$.

1 mark

Use the cosine rule in \triangle ADC to find the distance from A to C to the nearest kilometre.

2 marks

c Find the size of ∠ABC to the nearest degree.

2 marks

A compass radial survey has been completed of a block of land.

Explain why ΔOPQ is a right-angled triangle.

1 mark

b Find the length of PQ.

1 mark

c Find the size of \angle SOP.

1 mark

d Find the area of \triangle SOP.

1 mark

A plane leaves A and flies on a bearing of 125° to B, a distance of 320 km. From B it flies on a bearing of 205° to C, which is due south of A.

a Draw a diagram showing the path of the plane.

1 mark

What is the size of angle ABC?

1 mark

Find the distance from B to C to the nearest kilometre.

2 marks

Find θ to the nearest minute.

2 marks

Go to p 289 for Quick Answers or to pp 336-7 for Worked Solutions

= 5005.626 834 ...

The area of the triangle is 5006 m2, C to the nearest square metre.

$$\sin A = \frac{61 \sin 40^{\circ}}{75}$$

$$\angle A = 31.520 \ 297 \ 67 \dots^{\circ}$$

$$= 32^{\circ} \quad \text{(nearest degree)}$$

C

 $c^2 = a^2 + b^2 - 2ab\cos C$ $=8^2+4^2-2\times8\times4\times\cos70^\circ$ = 58.110 710 83 ... $c = \sqrt{58.11071083} \dots (c > 0)$ = 7.623 038 163 ... = 7.6 (1 d.p.)The length of AB is 7.6 metres, A to one decimal place.

 \mathbf{D}

Let X be a point due north of C and let Y be a point due north of B. $\angle YBA = 90^{\circ}$ (A is due west of B) ∠YBC = 90° - 40° ≈ 50° $\angle XCB + \angle YBC = 180^{\circ}$ (co-interior $\angle s$, parallel lines) ∠XCB = 180° - 50° $= 130^{\circ}$ The bearing of B from C is 130°.

 $\angle PQR = \angle SPQ$ (alternate angles,

$$A = \frac{1}{2} \times 100 \times 40 + \frac{1}{2} \times 100 \times 25$$

= 3250
The area of the land is 3250 m².

В

=
$$121^2 + 83^2$$

- $2 \times 121 \times 83 \times \cos 75^\circ$
= $16331.36066...$
 $d = \sqrt{16331.36066...}$ $(d > 0)$
= $127.7942122...$
= 128 (nearest unit)
The distance from A to C is
128 km, to the nearest kilometre.

Topic Test p161

$$\sin \theta = \frac{r}{p}$$

$$\cos \theta = \frac{q}{p}$$

$$\tan \theta = \frac{r}{a}$$

None are correct.

b
$$PQ^2 = 76^2 + 57^2$$

= 9025
 $PQ = \sqrt{9025}$ (PQ > 0)
= 95

The length of PQ is 95 metres.

c
$$\angle SOP = (360 - 326)^{\circ} + 58^{\circ}$$

= 92°

$$d A = \frac{1}{2} ps \sin O$$

$$= \frac{1}{2} \times 52 \times 76 \times \sin 92^{\circ}$$

to the nearest square metre.

= 1975 (nearest unit) The area of triangle SOP is 1975 m²,

b Let X be a point due north of A and let Y be a point due north of B.

$$\angle XAB + \angle ABY = 180^{\circ}$$
 (co-int. $\angle s$, parallel lines)

$$\angle ABY = 180^{\circ} - 125^{\circ}$$

= 55°

$$\angle ABC + 205^{\circ} + 55^{\circ} = 360^{\circ}$$
 (angles

$$\angle ABC = 360^{\circ} - 260^{\circ}$$

= 100°

c
$$\angle BAC = 180^{\circ} - 125^{\circ}$$
 (C is south

$$\angle BCA + 55^{\circ} + 100^{\circ} = 180^{\circ}$$
 (angle sum of \triangle)

$$\angle BCA = 25^{\circ}$$

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

$$\frac{a}{\sin C} = \frac{320}{\sin C}$$

$$\sin 55^{\circ} = \frac{\sin 25^{\circ}}{\sin 25^{\circ}}$$

$$a = \frac{320 \sin 55^{\circ}}{\sin 25^{\circ}}$$

$$=\frac{320 \sin 55}{\sin 25^{\circ}}$$

The distance from B to C is 620 km, to the nearest kilometre.

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\begin{array}{ccc}
a & b \\
\sin \theta & \sin 34^{\circ}15^{\circ}
\end{array}$$

$$\frac{13}{\sin \theta} = \frac{8}{13 \sin 34^{\circ}15'}$$

$$\sin \theta = \frac{8}{8}$$