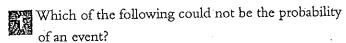
Topic Test: Probability

Total time allowed: 45 minutes Total marks: 35



- A 35%
- B 0.02

 $C \frac{7}{5}$

D 1

 $\mathbf{A} \quad \frac{1}{13}$

 $B \frac{2}{13}$

 $C \frac{1}{4}$

 $D \frac{3}{4}$

How many different ways can four people stand in a queue?

A 4

B 16

C 24

D 256

A bag contains four white, three red and two black balls. If a ball is drawn at random, find the probability that it is white.

 $A = \frac{4}{9}$

 $\mathbf{B} = \frac{3}{2}$

 $C_{\frac{1}{2}}$

 $\mathbf{D} = \frac{5}{9}$

Three boys decide to play against each other in a tennis round robin. If the probability of Rob winning is 32% and the probability of Tim winning is 0.43, then the probability that Matt wins is:

A $\frac{1}{4}$

- **B** 0.6575
- $C \frac{1}{3}$

D 0.75

In a single throw of one die, find the probability of having an even number.

 $\mathbf{A} = \frac{1}{6}$

В

 $C \frac{1}{2}$

 $\mathbf{D} = \frac{2}{3}$

The number of different number plates possible that can be made from three letters followed by three numbers is given by:

- A $26 \times 25 \times 24 \times 10 \times 9 \times 8$
- B $26 \times 26 \times 26 + 10 \times 10 \times 10$
- $C 26^3 \times 10^3$
- D $26^{3} \times 9^{3}$

A three-digit number is to be formed from the digits 4, 5 and 6 that are written on cards. What is the probability that the number will be even?

 $A = \frac{1}{3}$

 $B = \frac{2}{3}$

 $C \cdot \frac{3}{3}$

D None of these

From the data recorded, what is the relative frequency of owning a dog?

Type of pet	Cat	Dog	Horse	Hermit crabs	Fish
Number of					
students who	8	12	3	2	5
own one					

- A 12
- $B = \frac{1}{5}$
- C 0.4
- D None of these

 $A = \frac{1}{4}$

- $B = \frac{1}{12}$
- $C = \frac{9}{13}$

 $D = \frac{7}{13}$

Which of these experiments does *not* have equally likely outcomes?

- A Tossing an unbiased coin
- B Choosing a letter from the word SCHOOL
- C Choosing a letter at random from the numbers 1 to 8
- D Drawing a card from a standard pack of playing cards.

A letter is chosen at random from the word 'MATHEMATICS'. What is the probability that it will be a vowel?

Four students flipped a coin for 1 minute and recorded the number of heads and tails obtained. Which student's experimental results are closest to the theoretical probability?

A Madeline

Н	T
34	38

B Daniel

Н	Т		
28	31		

C Violet

H	T
32	4 2

D Amber

Н	T
18	23

A pair of dice is thrown, find the probability of getting a double six.

How many different outcomes are there if a coin is tossed, and two dice are rolled?

A 3

C 14

D 72

A bag contains five red, seven white and eight green marbles. If one marble is selected at random from the bag, what is the probability of drawing:

a a white marble?

1 mark

ii the two numbers are equal.

1 mark

b a red marble?

1 mark

Chelsea says: 'On any given day it is either raining or not raining, so the probability of it raining tomorrow is $\frac{1}{2}$.'

Is Chelsea correct? Briefly explain why or why not.

2 marks

c not a green marble?

1 mark

d a blue marble?

1 mark

Herman and Irene go out for dinner at a restaurant for their anniversary. On the menu there are three entrées, six main courses and five desserts to choose from.

a If both of them order a three-course meal, how many different combinations can they choose from?

1 mark

Two fair dice are thrown.

a Draw a table to show all the possible outcomes.

1 mark

b Due to high demand, one of the entrées is sold out and now unavailable. What is the probability that Herman does not choose this entrée?

1 mark

- b Find the probability that:
 - i the sum of the two numbers shown is 9

1 mark

_			
В	2.	35	5
L	1	æ	١
٠	4	3	3
ь	'n.	14	ć

Fifty families were surveyed to find out how many children in each family and the following set of data was tabulated:

Number of children	0	1	2	3	4	5,
Number of families	5	10	13	13	4	5

What is the relative frequency (as a fraction) of families having three children?

1 mark

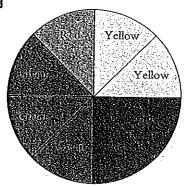
b Taking into consideration this survey, what would be the probability that a family selected at random has three children?

1 mark

e What is the probability of a family having five children?

1 mark

The spinner shown is used in a game.



a What is the percentage probability of landing on red or yellow?

1 mark

b How many more times likely are you to spin green than red?

1 mark

c Is the probability of this survey the same as the relative frequency?

1 mark

c Jenn uses the spinner 50 times and records that she landed on blue 14 times. Which is greater: the theoretical probability of landing on blue or the relative frequency of landing on blue?

1 mark

d What is the probability of a family, selected at random, having two or less than two children?

1 mark

d If Jenn spins the spinner 40 times, how many times should she expect to land on green?

1 mark

The answer $\frac{7}{5}$ could not be the probability of an ev	ent as
$0 \le P(E) \le 1$,	

$$P(E) = \frac{n(E)}{n(S)} = \frac{13}{52} = \frac{1}{4} \quad \checkmark$$

Total =
$$4 \times 3 \times 2 \times 1 = 24$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{9} \quad \checkmark$$

Since the total probability of all outcomes is 1,

$$P(\text{Rob}) + P(\text{Tim}) + P(\text{Matt}) = 1.$$

 $P(\text{Matt}) = 1 - [P(\text{Rob}) + P(\text{Tim})]$
 $= 1 - [32\% + 0.43]$
 $= \frac{1}{4}$

$$P(E) = \frac{n(E)}{n(S)} = \frac{3}{6} = \frac{1}{2}$$

Using the fundamental counting theorem, the number of choices for three letters followed by three numbers is
$$26 \times 26 \times 26 \times 10 \times 10 \times 10 = 26^3 \times 10^3$$
.

$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{6} = \frac{2}{3}$$

Relative frequency of owning a dog
$$= \frac{\text{Frequency of scores for a dog}}{\text{Total number of scores}}$$

$$= \frac{12}{8 + 12 + 3 + 2 + 5}$$

$$= \frac{2}{5} \text{ or } 0.4 \quad \checkmark$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{28}{52} = \frac{7}{13}$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{11} \qquad \checkmark$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{1}{36}$$

Using the fundamental counting theorem, the number of different outcomes is given by
$$2 \times 6 \times 6 = 72$$
.

a
$$\dot{P}(E) = \frac{n(E)}{n(S)} = \frac{7}{20}$$

b
$$P(E) = \frac{n(E)}{n(S)} = \frac{5}{20} = \frac{1}{4}$$

c
$$P(E) = \frac{n(E)}{n(S)} = \frac{12}{20} = \frac{3}{5}$$

d
$$P(E) = \frac{n(E)}{n(S)} = \frac{0}{20} = 0$$

a		1	2	3	4	5	6
	1	1,1	1,2	1,3	1,4	1,5	1,6
	2	2,1	2,2	2,3	2,4	2,5	2,6
ś	3	3,1	3,2	3,3	3,4	3,5	3,6
	4	4,1	4,2	4,3	4,4	4,5	4,6
	├		1	1	t		1

b i
$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{36} = \frac{1}{9}$$

ii $P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$

not guaranteed to be equally likely, so the probability of

6,6

rain is not
$$\frac{1}{2}$$
.

$$=3\times6\times5$$

b
$$P(\text{not choosing the sold out entrée})$$

= 1 - $P(\text{choosing the sold out entrée})$
= 1 - $\frac{1}{3}$

$$\frac{3}{1} = \frac{2}{3} \checkmark$$

$$\frac{13}{50}$$
 a $\frac{13}{50}$ \checkmark

b
$$\frac{13}{50}$$
 \checkmark

d
$$P(E) = \frac{n(E)}{n(S)} = \frac{28}{50} = \frac{14}{25}$$

e
$$P(E) = \frac{n(E)}{n(S)} = \frac{5}{50} = \frac{1}{10}$$

- a $P(\text{red or yellow}) = \frac{1+2}{8} \times 100\%$ = 37.5% ✓
 - b Green occurs three times and red occurs once, so you are three times more likely to spin green than red. 🗸
 - c Theoretical probability of landing on blue = $\frac{2}{8}$ or 0.25.
 - The relative frequency of landing on blue was $\frac{14}{50}$ or
 - 0.28. Therefore the relative frequency is greater. \checkmark
 - d Since green occurs $\frac{3}{8}$ times, Jenn should expect to land on green $\frac{3}{8} \times 40 = 15$ times. \checkmark