Areas and Volumes 1

- 1 The area between $y = 6x x^2$ and the x axis between x = 0 and x = 6, is rotated about the x-axis through one complete revolution. Find the volume of the solid generated.
- 2 The area bounded by the curve $y = x^2 4$ and the x axis is rotated about the y- axis. Find the volume so formed.
- 3 Find the area between the curve $y = x^3$, the x-axis and the ordinates at x = 1 and x = 3.

The shaded area in the diagram equals $\frac{2}{3}u^2$. Find the value of a.

The shaded area in the diagram is rotated about

- i) the x axis
- ii) the y-axis.

Find the volume generated in each case.

Find the area shaded in the diagram.

- 7 The curve $y = \sqrt{\cos x}$ between 0 and $\frac{\pi}{2}$ is rotated about the x axis. Find the volume generated.
- 8 The area bounded by the curve $y = \sqrt{x}$, the y-axis and y = 2 is rotated about the y-axis. Find the volume so formed.
- 9 i) Sketch the curve $y = \sin x$, $0 \le x \le 2\pi$.
 - ii) Find the area of one arch of this curve.

Areas and Volumes 1

1

V =
$$\pi \int y^2 dx$$

= $\pi \int (6x - x^2)^2 dx$
= $\pi \int [36x^2 - 12x^3 + x^4]dx$
= $\pi [12x^3 - 3x^4 + \frac{x^5}{5}]_0^6$
= $259.2 \pi u^3$

2

$$= \pi \int_{-4}^{0} (y+4) dy$$

$$= \pi \left[\frac{y^2}{2} + 4y \right]_{-4}^{0}$$

$$= \pi \left[0 - \left(\frac{16}{2} - 16 \right) \right]$$

$$= 8 \pi u^3$$

3

A =
$$\int y \, dx$$

$$= \int x^3 \, dx$$

$$= \left[\frac{x^4}{4}\right]_1^3$$

$$= \frac{81}{4} \cdot \frac{1}{4}$$

$$= 20x^2$$

4 A =
$$\int y \, dx$$

i.e. $\frac{2}{3}$ = $\int \frac{1}{x^2} \, dx$
 $\frac{2}{3}$ = $\left[\frac{-1}{x}\right]_1^a$
 $\frac{2}{3}$ = $\frac{-1}{a} + 1$
 $\frac{1}{a}$ = $\frac{1}{3}$ \therefore a = 3

5 i)
$$V = \pi \int (\frac{4 - x}{2})^2 dx$$

$$= \frac{\pi}{4} \int_0^4 (16 - 8x + x^2) dx$$

$$= \frac{\pi}{4} [16x - 4x^2 + \frac{x^3}{3}]_0^4$$

$$= \frac{\pi}{4} [64 - 64 + \frac{64}{3} - 0]$$

$$= \frac{16\pi}{3}$$
ii)
$$V = \pi \{ x^2 dy \}$$

ii)
$$V = \pi \int x^{2} dy$$

$$= \pi \int_{0}^{2} (4 - 2y)^{2} dy$$

$$= \pi \int_{0}^{2} (16 - 16y + 4y^{2}) dy$$

$$= \pi \left[16y - 8y^{2} + \frac{4y^{3}}{3}\right]_{0}^{2}$$

$$= \frac{32\pi}{3} u^{3}$$

6 A =
$$\int y dx$$

= $\int e^x dx$
= $\left[e^x \right]_0^2$
= $e^2 - e^0$
= $(e^2 - 1) u^2$
7 V = $\pi \int y^2 dx$
= $\pi \int \cos x dx$

$$= \pi \left[\sin x \right]_{0}^{\pi/2}$$
$$= \pi u^{3}$$

8

9

