Geometrical applications of differentiation

TOPIC TEST

Time allowed: 1 hour

Total marks = 100

SECTION I Multiple-choice questions

10 marks

11

S

Cŀ

Instructions • This section consists of 10 multiple-choice questions

- Each question is worth 1 mark
- Fill in only ONE CIRCLE
- Calculators may be used

1 If a curve is always increasing which MUST occur for all values of x.

2 If f'(a) < 0 and f''(a) > 0, then at x = a, y = f(x) is:

(A) increasing and concave up

(B) increasing and concave down

C decreasing and concave up

(D) decreasing and concave down

3 For the curve y = f(x) which is correct?

(A)
$$f'(x) > 0$$
 at P and $f'(x) < 0$ at Q

(B)
$$f'(x) < 0$$
 at P and $f'(x) < 0$ at Q

©
$$f'(x) > 0$$
 at P and $f'(x) > 0$ at Q

4 Which statement is correct?

- (A) All stationary points are turning points.
- All turning points are stationary points.
- C An absolute maximum must be a maximum turning point.
- ① A local minimum is the least value of the function over the given domain.

5 If
$$f(x) = x^2 + 5x + 4$$
 then $f''(3) = ?$

6 At a horizontal point of inflexion, which is correct?

(A)
$$\frac{dy}{dx} \neq 0$$
 and $\frac{d^2y}{dx^2} = 0$

(B)
$$\frac{dy}{dx} \neq 0$$
 and $\frac{d^2y}{dx^2} \neq 0$

7 Which is NOT a primitive function of $3x^2$?

$$\bigcirc$$
 (A) $x^3 + 7$

$$\bigcirc$$
 B $x^3 - 4$

(C)
$$x^3 + 1$$

$$\bigcirc$$
 $x^3 + 7x$

8	If $f'(a)$	= 0 and	f''(a) = 0.	then at $x =$	= a, y = f(x)	has:
•	11) (u)	– U anu	J (u) = 0,	tilen at x -	- u, y — J(^)	mas.

- (A) a maximum turning point
- (B) a minimum turning point
- (C) a horizontal point of inflexion
- (D) There is insufficient information to determine the nature of the stationary point.
- **9** At a point of inflexion a curve MUST have:

$$\bigcirc$$
 $\frac{dy}{dx} \neq 0$

10 The equation of a tangent to a curve y = f(x) at the point P(2, 4) is y = 10x - 16. Which is the only possible equation of the normal to y = f(x) at the point P?

(A)
$$10x - y - 16 = 0$$

(B)
$$10x - y + 16 = 0$$
 (C) $x + 10y - 42 = 0$ (D) $x + 10y + 42 = 0$

$$\bigcirc$$
 $x + 10y - 42 = 0$

SECTION II

90 marks

2 marks

Show all necessary working

- **11** Determine whether the curve $y = x^3 5x + 4$ is increasing or decreasing at the point (1, 0). 2 marks
- **12** For what values of x is the curve $y = x^3 + 9x 3$ increasing?
- **13** Find the stationary points of the curve $y = \frac{x^3}{3} x^2 8x + 11$ and use the first derivative to determine their nature. 6 marks

$\mathbf{a} y = x^3 - 9x^2 + 5x - 4$, D	$y = 3x - 5$ must be specified an interpolar $2 \cdot \mathbf{marks}$	each
		स्थानम् वर्षनेवन्तरी तेयातः से १३ - हे	
	•	neo ciáre le an rigiliza optaným 🧍	
3		क्षा वार्यासम्बद्धाः स्थापेत्रास्य क्षम्यस्य स्थासकारात्रा स्थापित्रस्य	
$y = (2x + 3)^4$	11 6.		marks
			,
		<u> </u>	
. 7 /	. ""		
d $y = \frac{7}{x^2} - \frac{4}{x^3}$	in the second second	3	marks
* cs7 * **			1.1.1
			4 Sy
$f(x) = 8x^2 - 3x^5$ Find $f''(-1)$		3 X.	mark
	· · · · · · · · · · · · · · · · · · ·		
Determine whether the curve $y = x^3$	$-2x^2 - 7x + 8$ is	concave up or concave down at the point	wher
$\sqrt{x} = 5$	en en en	3	mark
		7	
			-
For what values of x is the curve $y = \frac{1}{x^2}$	= 7x ³ – 9x ² concave	e down?	marl
For what values of x is the curve $y = \frac{1}{2}$	= 7x ³ – 9x ² concave	e down? 4	marl
For what values of <i>x</i> is the curve <i>y</i> =	= 7x ³ – 9x ² concave	e down? 4	marl

14 Find the second derivative of:

	$y = 2x^3 + 15x^2 - 84x + 13$				6 mark
		·			
				ı	
					
					
b	$y = 4x^3 - 5$				 4 mar
		· · · · · ·			
Fin	and the point of inflexion of the curve $y = \frac{1}{y}$	$x^3 + 9x^2 - 4x$	c + 3		 4 mai
Fin	and the point of inflexion of the curve $y = \frac{1}{y}$	$x^3 + 9x^2 - 4x$	x + 3		 4 mar
Fin	nd the point of inflexion of the curve <i>y</i> =	$x^3 + 9x^2 - 4x$	r + 3		4 mai
Fin	and the point of inflexion of the curve $y = \frac{1}{y}$	$x^3 + 9x^2 - 4x$	x + 3		 4 mar
Fin	and the point of inflexion of the curve $y = \frac{1}{2}$	$x^3 + 9x^2 - 4x$	c + 3		 4 mai
Fin	nd the point of inflexion of the curve $y =$	$x^3 + 9x^2 - 4x$	x + 3		4 mai
Fir — — — — — — — — — — — — — — — — — — —	and the point of inflexion of the curve $y = \frac{1}{2}$	$x^3 + 9x^2 - 4x$	x + 3		4 mai
Fir	nd the point of inflexion of the curve $y =$	x ³ + 9x ² - 4x	x + 3		4 mai
Fir	and the point of inflexion of the curve $y = \frac{1}{y}$	$x^3 + 9x^2 - 4x$	x + 3		4 mai
Fir	nd the point of inflexion of the curve $y =$	x ³ + 9x ² - 4x	x + 3		4 mai
Fir	and the point of inflexion of the curve $y = \frac{1}{2}$	$x^3 + 9x^2 - 4x$	x + 3		4 mai
Fir	nd the point of inflexion of the curve $y =$	x ³ + 9x ² - 4x	x + 3		4 ma
Fir	nd the point of inflexion of the curve $y =$	$x^3 + 9x^2 - 4x$	x + 3		4 mai
	and the point of inflexion of the curve $y = \frac{1}{2}$ and the equation of the tangent to the curve			1, 6)	
				1, 6)	
				1, 6)	4 mai
				1, 6)	

:h

ks

ks

ere ·ks

	-
	·
Sketch the curve $y = x^4 - 8x^2 + 7$, $-3 \le x \le 3$	16 ma
	ं से भू क
	<u>-</u>
	_
<u> </u>	<u></u>
	- ,
	-
	-
*	-
	
F0 4.	_ vine in a medical probability mediane making the
· · · · · · · · · · · · · · · · · · ·	_/-
· · · · · · · · · · · · · · · · · · ·	<u>-</u>
	<u>_</u>

23 A farmer wishes to build three new calf yards, as shown in the diagram. She has enough materials to fence 800 m.

Show that the total area (A m²) is given by $A = 800x - 8x^2$

3 marks

b Find the maximum total area (in hectares)

6 marks

- **24** Find primitive functions of:
 - \cdot **a** x^5

ks

3 marks

b $10x^4 - 6x^2 + 5$

3 marks

c $\frac{1}{\sqrt{3}}$

3 marks

25 A curve y = f(x) has gradient function $f'(x) = 3x^2 - 8x + 5$. The curve passes through the point (1, 4). Find the equation of the curve. 5 marks

Pages 28-33 1 A 2 C₇3 A 4 B 5 A 6 C 7 D 8 D 9 B 10 C 11 decreasing 12 all values of x 13 minimum at $\left(4, -15\frac{2}{3}\right)$, maximum at $\left(-2, 20\frac{1}{3}\right)$ 14 a 6x - 18 b 0 c 48(2x + 3)² d $\frac{42}{x^4} - \frac{48}{x^5}$ 15 76 16 concave up 17 $x < \frac{3}{7}$ 18 a maximum at (-7, 650), minimum at (2, -79), b horizontal point of inflexion at (0, -5) 19 (-3, 69) 20 y = -3x + 9 21 4x + 20y - 47 = 0 22 maximum at (0, 7) minimum at (2, -9) and at (-2, -9), points of inflexion at $\left(\frac{2\sqrt{3}}{3}, -1\frac{8}{9}\right)$ and $\left(-\frac{2\sqrt{3}}{3}, -1\frac{8}{9}\right)$, endpoints of domain (-3, 16), (3, 16) (below) 23 b 2 ha 24 a $\frac{x^6}{6} + C$ b $2x^5 - 2x^3 + 5x + C$ c $-\frac{1}{2x^2} + C$ 25 $y = x^3 - 4x^2 + 5x + 2$

