Applications of calculus to the physical world

EXCEL HSC MATHEMATICS pages 138-139

Rates of change (1)

Fill in the correct inequality signs (< or >) for each diagram: QUESTION 1

d

The number of registered pets in a town, P, was studied over a period of time. At the beginning QUESTION 2 of this period there were 25 000 registered pets.

Throughout the period $\frac{dP}{dt} > 0$. What does this say about the number of registered pets during the period?

b	At the same tir	$e \frac{d^2P}{dt^2} < 0$. What do	oes this s	ay about th
---	-----------------	---------------------------	-----------	------------	-------------

e number of pet registrations?

Draw a possible sketch of P against t

Applications of calculus to the physical world

EXCEL HSC MATHEMATICS pages 138–139

Rates of change (2)

Qui	The rate of change of volume V is given	by	$R = \frac{dV}{dt} = 1600t - t^3$ ($t \ge 0$). Find:
a		b	t when $R = 0$
С	an expression for V if $V = 1000$ when $t = 0$	d	V when $t = 5$
	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Ou	ESTION 2 Water is flowing through a filter at a vari	ahl	o rate given by $dV = 00$. Et where V is the values
Qυ	in litres at time t minutes.	aut	e rate given by $\frac{dV}{dt} = 90 - 5t$, where V is the volume
a	At what rate is the water flowing after 10 minutes?		
	······		
b	When will the water cease flowing?		
С	How much water flows through the filter in this time	ie?	

Applications of calculus to the physical world

Rates of change (3)

QUESTION 1 In a factory, flour is poured into a biscuit mixture. The rate, in grams per second, at which the flour pours into the mixture is given by $R = 900t - t^3$ where t is the time in seconds.

a What is the rate at which the flour is being poured when t = 5?

b Afte	r how	many	seconds	is	there	no	longer	any	flour	being	poured?
---------------	-------	------	---------	----	-------	----	--------	-----	-------	-------	---------

C	How	much	flour	is	poured	during	the	first	20	seconds?

											1
d	What is the	maximum	rate	at	which	the	flour	pours	into	the	mixture?

CHAPTER 5 - Applications of calculus to the physical world

Page 123 1 a >, < b <, < c <, > d >, > 2 a The number of registered pets is increasing over the period. b The number of pet registrations is increasing at a decreasing rate. c (see right)

Page 125 1 a 4375 grams per second **b** 30 seconds **c** 140 kg **d** $6000 \sqrt{3} \text{ g/s}$

