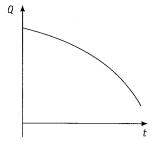
Applications of calculus to the physical world

TOPIC TEST

Time allowed: 1 hour

Total marks = 100


SECTION I Multiple-choice questions

10 marks

Instructions • This section consists of 10 multiple-choice questions

- Each question is worth 1 mark
- Fill in only ONE CIRCLE
- Calculators may be used
- 1 Velocity is the rate of change of:
 - (A) displacement
- **B** speed
- © acceleration
- (D) none of these

2 From the diagram

- **3** If a particle is undergoing motion such that at a particular time T, x > 0, $\dot{x} < 0$ and $\ddot{x} < 0$ then at T the particle is:
 - (A) slowing down
- B speeding up
- © stationary
- ① there is not enough information to determine what the particle is doing
- **4** The population P of a colony of flying foxes at time t is approximated using the expression $P = 800e^{0.5t}$. Initially the population was approximately:
 - **(A)** 1320
- **B** 800
- © 400
- ① there is not enough information to determine the initial population
- **5** The graph shows the distance *x* of a particle (which is moving in a straight line), from a fixed point at time *t*. At what time is the particle moving fastest?

- (\mathbf{B}) t_2
- \bigcirc t_3
- $(\widehat{\mathbf{D}})$ t_4

- t_1 t_2 t_3 t_4 t_4
- **6** If the velocity of a moving particle at time t is given by v = 9t the acceleration is?
 - (A) constant
- B zero
- © increasing
- (D) decreasing

7 The rate, R kg/s at which grain is flowing from a bin is given by $R = 80t - 3t^2$ where t is the time in seconds. For which value of t is R not physically possible?

 (\mathbf{A}) t=0

(B) t = 10

 \bigcirc t = 20

 \bigcirc t = 30

8 Which *must* be true if a particle is stationary?

(A) displacement is zero

B velocity is zero

© acceleration is zero

all of these

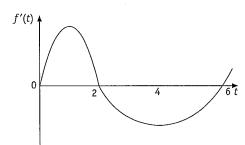
9 The number of animals on an island, N, at time t is given by the formula $N = 7000e^{-kt}$ where k is a positive constant. Over time the number of animals on the island is?

(A) increasing exponentially

B decreasing exponentially

© increasing at a constant rate

(D) decreasing at a constant rate


10 The diagram shows a sketch of the graph of y = f'(t) at time t. When t = 2, y = f(t) is?

(A) a maximum

(B) a minimum

© zero

(D) there is insufficient information

SECTION II

90 marks

Show all necessary working

11 If $y = 8 - 5t - 3t^2$ find:

2 marks each

a $\frac{dy}{dt}$

 $\mathbf{b} \quad \frac{d^2y}{dt^2}$

12 If $f(t) = 2 \cos 4t$ find:

2 marks each

a f'(t)

b f''(t)

13 If $x = t^3 - 3t^2 + 7e^t$ find:

2 marks each

а *х*

 $\mathbf{b} \quad \ddot{x}$

14	rına	Χ	11	Χ	=	8t-	-	6t	+	3	and,	when	t =	=	2,	Χ	=	3

4 marks

15 Find x if $\ddot{x} = -4$ and, when t = 1, $\dot{x} = 5$ and x = 8

6 marks

16 $Q = 7 + 20t - 2t^2$ $(t \ge 0)$. Find:

a Q when t = 4

2 marks

b t when Q = 39

4 marks

 $\mathbf{c} \quad \frac{dQ}{dt} \text{ when } t = 3$

4 marks

d t when $\frac{dQ}{dt} = 0$

4 marks

.,	dt	t = 0, F = 12. Find:	
	a	$\frac{dP}{dt}$ when $t = 3$	2 marks
	b.	P when $t = 3$	5 marks
18	Gas in	s is pumped into a previously empty chamber at a litres and t is the time in minutes.	a rate given by $\frac{dV}{dt} = \frac{e^t}{5}$ where V is the volume of gas
	a	What is the initial rate at which the gas is pun	nped into the chamber? 3 marks
	b	Find an expression for <i>V</i> in terms of <i>t</i> .	5 marks
19	The	e number of bacteria in a culture is given by $N =$ hours. After 5 hours the number of bacteria has	$\frac{10\ 000e^{kt}}{10\ 000e^{kt}}$ where k is a positive constant and t the time increased to 20 000.
	a	What was the initial number of bacteria?	2 marks
	b	Find the value of k correct to four decimal place	es. 4 marks
		`	
			continued

-	How many bacteria are in the colony after 24 hours?	4 ma
-		
d I	How long is it before the number of bacteria reaches	1 million? 5 ma
-		
	displacement, x m, of a moving particle at time t serind the velocity when $t=2$	conds is given by $x = \ln(1 + t)$
- -		
b	Find the acceleration when $t = 2$	2 5 m
The	acceleration (a m s ⁻²) of a particle moving along the	x-axis is given by $a = -1$. Originally the par
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the	x-axis is given by $a = -1$. Originally the pare left of the origin.
The is m	acceleration (a m s ⁻²) of a particle moving along the	x-axis is given by $a = -1$. Originally the pare left of the origin.
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the	x-axis is given by $a = -1$. Originally the par
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the	x-axis is given by $a = -1$. Originally the pare left of the origin.
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the	x-axis is given by $a = -1$. Originally the pare left of the origin.
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the When is the particle stationary?	x-axis is given by $a = -1$. Originally the pare left of the origin. 5 m
The is m	acceleration (a m s ⁻²) of a particle moving along the noving with velocity 4 m s ⁻¹ at a position 8 m to the When is the particle stationary?	x-axis is given by $a = -1$. Originally the pare left of the origin. 5 m

Pages 136-140 1 A 2 D 3 B 4 B 5 B 6 A 7 D 8 B 9 B 10 A 11 a -5 - 6t b -6 12 a -8 $\sin 4t$ b -32 $\cos 4t$ 13 a $3t^2 - 6t + 7e^t$ b $6t - 6 + 7e^t$

14 $x = \frac{8t^3}{3} - 3t^2 + 3t - 12\frac{1}{3}$ 15 $x = -2t^2 + 9t + 1$ 16 a 55 b 2 or 8 c 8 d 5 17 a 5 b 45 18 a 0.2 L/min b $V = \frac{e^t - 1}{5}$

19 a 10 000 **b** 0.1386 **c** 278 576 [nearest whole number] **d** 34th hour **20** $a\frac{1}{3}$ m s⁻¹ **b** $-\frac{1}{9}$ m s⁻² **21 a** 4 s **b** 4 s **c** The particle

is stationary when t = 4, and because $\ddot{x} < 0$, the maximum displacement occurs when t = 4. So the maximum displacement is 0 m and the particle never moves right of the origin.