CENTRE OF EXCELLENCE IN MATHS TUITION

YEAR 11 – MATHEMATICS

SPECIMEN PAPER 1 TOPIC: QUADRATIC EQUATIONS

Received on	Check corrections on pages:
Completed on	
Checked by	

Tutor's Initials

Dated on

Question 1:

(a) Show that $x^2 + 4x + 7 = (x + 2)^2 + a$ where a is to be determined. [2]

(b) Sketch the graph of $y = x^2 + 4x + 7$, giving the equation of the axis of symmetry and the co-ordinates of its vertex [4]

Question 2:

A quadratic function is defined by $f(x) = x^2 + 8x - 3$

(a) Find values of p and q such that $f(x) = (x - p)^2 + q$ [3]

(b) Hence find the value of x for which f(x) has a minimum value. State this minimum value. [2]

Question 3:

(a) Write $x^2 + 4x + 14$ in the form $(x + p)^2 + q$, where p and q are integers to be found [2]

(b) Find the minimum value of $x^2 + 4x + 14$. State the value of x for which this minimum occurs. [2]

(c) Find the value of the constant k for which $x^2 + 4x + k = 0$ has equal roots [2]

Question 4:

Given a quadratic function $f(x) = 12 - 8x - x^2$

(a) Find values of p and q such that $f(x) = q - (x + p)^2$ [2]

(b) Hence find the value of x for which f(x) has a maximum value. State this maximum value [2]

(c) Find the minimum value of $\frac{1}{12-8x-x^2}$ [1]

Question 5:

(a) Determine the values of a and b such that $x^2 - 8x - 1 \equiv (x + a)^2 + b$. Hence find the minimum value of $x^2 - 8x - 1$ and state the value of x for which this occurs.

(b) Write down the maximum value of $\frac{1}{x^2 - 8x - 1}$ [1]

(c) Sketch the graph of $y = x^2 - 8x - 1$. On your graph mark the co-ordinates of the points where the curve cuts the co-ordinate axes. What is the equation of the line of symmetry of the curve? [3]

Question 6:

- (a) By completing the square, find the maximum value of the quadratic function $5 + 8x 2x^2$. State the value of x at which this occurs. [4]
- (b) Sketch the function $y = 5 + 8x 2x^2$, giving the equation of the axis of symmetry of the curve. Show on your sketch the co-ordinates of the points where the curve cuts the co-ordinate axes. [3]

(c) Write down the minimum value of $\frac{1}{5+8x-2x^2}$ [1]

Solutions to Quadratic Equations – Specimen paper 1: Question 1:

$$x^{2} + 4x + 7 \equiv (x + 2)^{2} - 2^{2} + 7$$

$$\equiv (x + 2)^{2} - 4 + 7$$

$$\equiv (x + 2)^{2} + 3$$

$$\Rightarrow a = 3$$

(b)
$$y = x^2 + 4x + 7$$

$$\Rightarrow y = (x+2)^2 + 3$$

$$\Rightarrow \text{ The function has a minimum of 3 where } x = -2$$

The dashed line is the axis of symmetry which has equation x = -2

Question 2:

(a)
$$f(x) = x^{2} + 8x - 3$$
By completing the square
$$f(x) = (x + 4)^{2} - 4^{2} - 3$$

$$= (x + 4)^{2} - 19$$

$$= (x - (-4))^{2} + (-19)$$

$$\Rightarrow p = -4$$

$$, \qquad q = -19$$

(b) When x = -4, the function will have a minimum value of -19

Question 3:

(a) By completing the square

$$x^{2} + 4x + 14 = (x+2)^{2} - 2^{2} + 14$$

$$= (x+2)^{2} + 10$$

$$\Rightarrow p = 2 \qquad q = 10$$

(b)
$$x^2 + 4x + 14 = (x - (-2))^2 + 10$$

 \Rightarrow Minimum value of $x^2 + 4x + 14$ is 10 which occurs when $x = -2$

(c)
$$x^{2} + 4x + k = 0$$

$$a = 1 \qquad b = 4 \qquad c = k$$
For equal roots
$$b^{2} - 4ac = 0$$

$$4^{2} - 4 \times 1 \times k = 0$$

$$16 = 4k$$

$$\Rightarrow \qquad k = 4$$

Question 4:

(a)
$$f(x) = 12 - 8x - x^{2}$$
By completing the square
$$f(x) = -\left[x^{2} + 8x - 12\right]$$

$$= -\left[(x+4)^{2} - 4^{2} - 12\right]$$

$$= -\left[(x+4)^{2} - 28\right]$$

$$= 28 - (x+4)^{2}$$

$$\Rightarrow p = 4$$

$$\Rightarrow q = 28$$

- (b) f(x) has a maximum value of 28 which occurs when x = -4
- (c) Minimum value of $\frac{1}{12-8x-x^2}$ occurs when $12-8x-x^2$ has a maximum value. \Rightarrow Minimum value of $\frac{1}{12-8x-x^2} = \frac{1}{28}$

Question 5:

(a) By completing the square

$$x^{2} - 8x - 1 \equiv (x - 4)^{2} - 4^{2} - 1$$

$$\equiv (x + (-4))^{2} + (-17)$$

$$\Rightarrow a = -4 , b = -17$$
Minimum value of $x^{2} - 8x - 1$ is -17 which occurs when $x = 4$

(b) Maximum value of $\frac{1}{x^2 - 8x - 1}$ occurs when $x^2 - 8x - 1$ has a minimum value

$$\Rightarrow \text{Maximum value of } \frac{1}{x^2 - 8x - 1} = \frac{1}{-17}$$

$$\text{Maximum value of } \frac{1}{x^2 - 8x - 1} = -\frac{1}{17}$$

(c) To cut y axis x = 0 \Rightarrow Curve cuts y axis at (0, -1)To cut x axis y = 0 $x^2 - 8x - 1 = 0$ $(x - 4)^2 - 17 = 0$ $(x - 4)^2 = 17$ $x - 4 = \pm \sqrt{17}$ $x = 4 \pm \sqrt{17}$ $x = 4 \pm \sqrt{17}$ $x = 4 \pm \sqrt{17}$

The line of symmetry (dashed line) is x = 4

Question 6:

(a) By completing the square

$$5 + 8x - 2x^{2} = -2\left[x^{2} - 4x - \frac{5}{2}\right]$$

$$= -2\left[(x - 2)^{2} - 2^{2} - \frac{5}{2}\right]$$

$$= -2\left[(x - 2)^{2} - \frac{13}{2}\right]$$

$$= 13 - 2(x - 2)^{2}$$

 \Rightarrow The maximum value of the function is 13 which occurs when x = 2

(b) To cut x axis y = 0 $5 + 8x - 2x^{2} = 0$ $13 - 2(x - 2)^{2} = 0$ $(x - 2)^{2} = \frac{13}{2}$ $x - 2 = \pm \sqrt{\frac{13}{2}}$ $x = 2 \pm \sqrt{\frac{13}{2}}$ $\Rightarrow \text{Curve cuts } x \text{ axis at } \left(2 - \sqrt{\frac{13}{2}}, 0\right) \text{ and } \left(2 + \sqrt{\frac{13}{2}}, 0\right)$ To cut y axis x = 0 $\Rightarrow \text{Curve cuts } y \text{ axis at } (0, 5)$

Equation of axis of symmetry is x = 2

- (c) Minimum value of $\frac{1}{5+8x-2x^2}$ occurs when $5+8x-2x^2$ is a maximum.
 - \Rightarrow Minimum value = $\frac{1}{13}$