CHAPTER 8

Applications of geometrical properties

Theoretical applications (1)

Question 1	In triangle ABC, D is a point on AB such that DB = DC. E is a point on AC such that DE bisectangle ADC. Show that DE is parallel to BC.				
	B				
	E C				

QUESTION **2** E is a point on AD and B a point on CE. \angle EAB = \angle ECD. AB = 78 cm. AE = 72 cm. CE = 60 cm. CD = 65 cm.

Prove that AD is perpendicular to CE.

Hence show that B is the midpoint of CE.

Applications of geometrical properties

Theoretical applications (2)

QUESTION $\bf 1$ ABCD is a square. E is a point on side AD and F a point on diagonal BD such that EF is perpendicular to BD and DF = AE

a Show that triangle EFD is isosceles.

b Use congruent triangles to prove that BE bisects ∠ABD.

QUESTION 2 B is point on side AC and E a point on side AD of triangle ACD. BD = CD. AE = ED. $BE \perp AD$.

a Prove that $\triangle ABE \equiv \triangle DBE$

b Prove that $\angle ACD = 2 \angle BAE$

Applications of geometrical properties

Theoretical applications (3)

QUESTION 1 PQRS is a parallelogram. T	is a point on PQ such that QT = 2PT. PR and TS intersect at U.
Show that triangles PTU and RSU are s	
	P T
	s R
Show that $ST = 4TU$	
PUESTION 2 ABCD is a square. E is a po	pint on diagonal AC such that ED = EC.
Show this information on a diagram.	b Prove that triangle AED is right-angled.
;	

Page 194 1 (show that alternate angles are equal) 2 a (show that the triangles are similar) b (use Pythagoras' theorem)

Page 195 1 a (what is the size of \angle FDE?) b (RHS) 2 a (SAS) b (let \angle BAE = α)

Page 196 1 a (equiangular) b (use corresponding sides of similar triangles) 2 a (see right) b (find the size of /FCD)

