#### CHAPTER 1

# Geometrical applications of differentiation

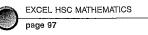
## The sign of the derivative (1)

QUESTION **1** Determine whether f'(2) is positive or negative:

a  $f(x) = x^2 - 7x$ 

- **b**  $f(x) = x^3 7x + 5$
- c  $f(x) = 9 3x x^2$

QUESTION 2 Determine whether the curve is increasing or decreasing at the given point:


- **a**  $y = x^4 x^3$  at (1, 0)
- **b**  $y = 8x^2 + 11x 4$  at (-2, 6) **c**  $y = -\frac{3}{x}$  at (3, -1)

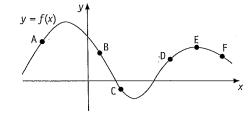
QUESTION **3** For what values of x is the curve y = f(x) increasing?

a y = 7x + 4

- **b**  $y = x^2 + 8x 5$
- **c**  $y = 4x^3 1$

## Geometrical applications of differentiation




### The sign of the derivative (2)

QUESTION **1** For what value of x is the curve y = f(x) decreasing?

- a  $y = x^2 6x + 1$
- **b**  $y = x^3 12x + 5$  **c**  $y = 2x^3 + 3$

| • |                                       | ** |
|---|---------------------------------------|----|
|   |                                       |    |
|   |                                       |    |
|   |                                       | ·  |
| - | · · · · · · · · · · · · · · · · · · · |    |

QUESTION 2 For the curve y = f(x) indicate whether f'(x) will be positive, negative or zero at each of the



QUESTION **3** Show that the curve:

a  $y = 2x^3 + 6x - 2$  is always increasing

**b**  $y = x^5$  never decreases

| <br> |      |  |
|------|------|--|
|      |      |  |
| <br> |      |  |
|      |      |  |
| <br> | <br> |  |

|                  | <br> |  |
|------------------|------|--|
|                  |      |  |
| <br><del>.</del> | <br> |  |
|                  |      |  |
| <br>             |      |  |
|                  |      |  |

Page 1 1 a negative b positive c negative 2 a increasing b decreasing c increasing 3 a all real values of x b x > -4**c** all real values of x except x = 0

Page 2 1 a x < 3 b -2 < x < 2 c no values of x 2 a positive b negative c negative d positive e zero f negative