

Applications of derivatives (1)

UESTION 1	Find the equation of the tangent to		4
			·
STION 2	Find the equation of the normal to t	he curve $y = 2e^{-x}$ at the	the point where $x = 1$
	<u> </u>		
duestion 3	The tangent to the curve $y = e^x$ at coordinates of P.		<i>x</i> -axis at an angle of 45°. Find
QUESTION 4	Find the maximum value of $\frac{\ln x}{x}$		
		,	
	·.		

Applications of derivatives (2)

QUESTION **1** Consider $f(x) = e^x(1-x)$

a Where does the curve y = f(x) cross the x-axis?

b Find any stationary points and determine their nature.

c Find any points of inflexion.

d Complete:

_		
i	as $x \to \infty$, $v \to $	

ii as $x \to -\infty$, $y \to \underline{\hspace{1cm}}$

e Sketch the curve y = f(x)

Applications of integrals of e^x

QUESTION 1

a Find the area bounded by the curve $y = e^x$, the x-axis, x = 0 and $x = \ln 3$

b Hence find the shaded area.

- QUESTION **2** A curve y = f(x) has a turning point at (0, 4). If $f''(x) = e^x + e^{-x}$ find the equation of the curve.
- QUESTION **3** Show that the volume of the solid of revolution formed by rotating the curve $y = e^x$, between x = 0 and x = 5 about the x-axis is given by $\frac{\pi}{2}(e^{10} 1)$ units³.

Applications of integration of $\frac{1}{x}$

Find the exact area bounded by the curve $y = \frac{4}{x}$, the x-axis and the ordinates x = 2 and x = 4QUESTION 1

The gradient function of a curve is given by $6x - \frac{2}{2x - 1}$. Find the equation of the curve if it QUESTION 2 passes through the point (1, 7).

QUESTION 3 Find the area shaded in the diagram.

Page 110 1 2x - ey = 0 2 e^2x - 2ey - e^2 + 4 = 0 3 (0, 1) 4 $\frac{1}{e}$

Page 111 1 a (1, 0) b maximum at (0, 1) c $\left(-1, \frac{2}{e}\right)$ d i $-\infty$ ii 0 e

Page 112 1 a 2 units² b (3 ln 3 - 2) units² 2 $y = e^x + e^{-x} + 2$ **Page 113** 1 4 ln 2 units² 2 $y = 3x^2 - \ln(2x - 1) + 4$ 3 2 ln 2 units²

