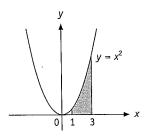
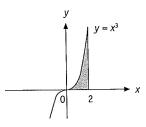
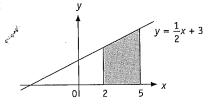
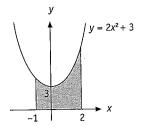
EXCEL HSC MATHEMATICS

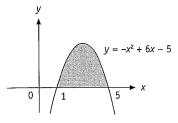

Area (1)

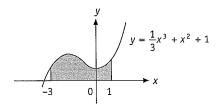

Complete: QUESTION 1


If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx$ gives the area beneath the _____ above the ___ and between the lines x =____ and x =____.


QUESTION 2 Find the shaded area:

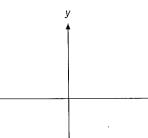
a

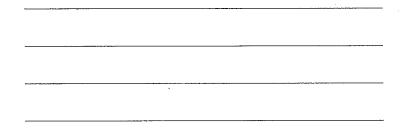


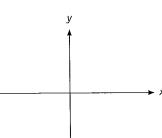


Ārea (2)

QUESTION 1

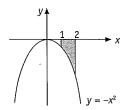

Find the shaded area:



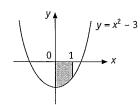

QUESTION **2** Find the area bounded by the curve $y = (x - 1)^2$, the x-axis and the lines x = 2 and x = 3

QUESTION **3** Find the area beneath the curve $y = 4 - x^2$ and above the x-axis.

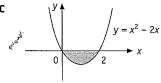
EXCEL HSC MATHEMATICS pages 110–111

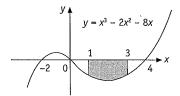

Areas below the x-axis (1)

QUESTION 1 Complete:


If f(x) < 0 for $a \le x \le b$, then $\int_a^b f(x)dx$ will be ______ (positive/negative). The area bounded by the curve the x-axis and the lines x = a and x = b is equal to the ______ of the integral.

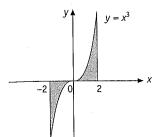
QUESTION **2** Find the shaded area:


а

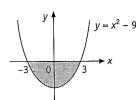

b

,

d

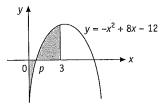

,

Areas below the x-axis (2)


QUESTION 1 Find the shaded area. (Use symmetry to simplify the working.)

by the

tegral.

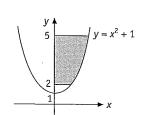


b

QUESTION 2

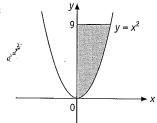
a The point closest to the y-axis where the curve $y = -x^2 + 8x - 12$ cuts the x-axis is where x = p. Find the value of p.

b Find the shaded area.

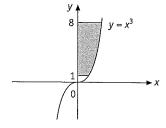

EXCEL HSC MATHEMATICS

Areas bounded by the y-axis (1)

QUESTION 1

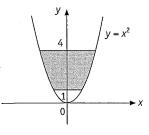

a Make x the subject of the equation $y = x^2 + 1$

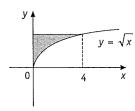
b Find the area shaded in the diagram.



QUESTION **2** Find the shaded area:

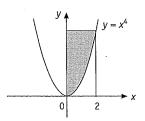
2


b


$\overline{\text{Areas}}$ bounded by the y-axis (2)

QUESTION **1** Find the shaded area:

a

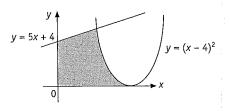


b

QUESTION 2

Find the area bounded by the curve $y = x^4$, the x-axis, and the ordinates x = 0 and x = 2.

Hence find the shaded area.


(BOOK

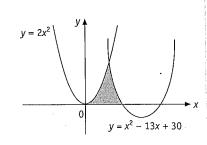
EXCEL HSC MATHEMATICS

Combined areas (1)

QUESTION 1

a Find the x-coordinates of the points of intersection of the line y = 5x + 4 and the parabola $y = (x - 4)^2$

b Find the shaded area.


QUESTION 2

a Solve:

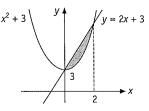
 $\mathbf{i} \quad x^2 - 13x + 30 = 0$

ii
$$2x^2 = x^2 - 13x + 30$$

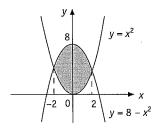
b Find the shaded area:

Q١

a

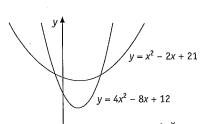

Qι

b


Combined areas (2)

QUESTION 1 Find the shaded area:

a ,


I

QUESTION **2** The diagram shows the graphs of $y = 4x^2 - 8x + 12$ and $y = x^2 - 2x + 21$

a Find the *x*-coordinates of the points of intersection of the curves.

L.

b Find the area between the curves.

Page 44 1 curve, x-axis, a, b 2 a $8\frac{2}{3}$ units² b 4 units² c $14\frac{1}{4}$ units² d 15 units² **Page 45** 1 a $10\frac{2}{3}$ units² b $6\frac{2}{3}$ units² 2 $2\frac{1}{3}$ units² 3 $10\frac{2}{3}$ units²

Page 46 1 negative, absolute value 2 a $2\frac{1}{3}$ units² b $2\frac{2}{3}$ units² c $1\frac{1}{3}$ units² d $29\frac{1}{3}$ units²

Page 47 1 a 8 units² b 36 units² 2 a p = 2 b $12\frac{1}{3}$ units²

Page 48 1 a $x = \pm \sqrt{y-1}$ b $4\frac{2}{3}$ units² 2 a 18 units² b $11\frac{1}{4}$ units²

Page 49 1 a $9\frac{1}{3}$ units² b $2\frac{2}{3}$ units² 2 a 6.4 units² b 25.6 units²

Page 50 1 a x = 1 and x = 12 b 15.5 units² 2 a i x = 3 or x = 10 ii x = -15 or x = 2 b $9\frac{1}{6}$ units²

Page 51 1 a $1\frac{1}{3}$ units² b $21\frac{1}{3}$ units² 2 a x = -1 and x = 3 b 32 units²