5G 2009

GRAPHS AND INEQUATIONS (3A,C,D,E,F)

20th February

Attempt all questions. Show all working. Use your own paper.

1. Solve for x:

(a) 
$$4x - 1 < -9$$

(b) 
$$-7 < 3 - 5x \le 3$$
,

(c) 
$$x^2 \le 16$$

2. Evaluate the following

(a) 
$$|-4|-|-7|$$

(b) 
$$|-3+6-10|$$

3. (a) If x = -7, evaluate |x + 3|.

(b) Solve the equation |x+3|=2.

(c) Solve the inequation  $|5x + 3| \le 2$  and graph the solution on a number line.

4. Sketch the graph of y = (x-2)(x+3). Hence, solve y = (x-2)(x+3) > 0

5. Determine algebraically whether the function  $f(x) = x(x^2 - 2)$  is even, odd or neither.

6.



The graph of y = (x - 3)(x + 3) is sketched above.

(a) Carefully sketch the graph of y = |(x-3)(x+3)|.

(b) State if the function y = |(x-3)(x+3)| is even, odd or neither.

8. (a) Sketch y = |x - 1| and y = 2x + 3 on the same number plane.

(b) Find, algebraically, the points of intersection of the two graphs.

(c) Hence solve |x-1| < 2x + 3.

9. (a) Sketch the union of  $x^2 + y^2 \le 1$  and y > 2 - x.

(b) What is the intersection of these two regions?

## DG Graphs + inequations

1a) 
$$4 \times -1 < -9$$
  
 $4 \times < -8$   
 $x < -2$ 

b) 
$$-\frac{7}{3} < 3 - 5x \leq 3$$
  
 $\frac{-10}{-5} < \frac{-5x}{-5} \leq \frac{50}{-5}$ 

c) 
$$x^2 \le 16$$
  
 $x^2 - 16 \le 0$  X quadratic  
 $(x - 4)(x + 4) \le 0$  inequality  
 $\frac{y}{d}$   $\frac{draw q}{diagram}$ 



$$(2a) |-4|-|-7| = 4 -7$$
 $= -3$ 

3 a) 
$$|x+3| = |-7+3|$$
  
=  $|-4|$ 

c) 
$$|5x+3| \le 2$$
  
 $-2 \le 5x+3 \le 2$   
 $-3$   
 $-5 \le 5x \le -1$   
 $-1 \le x \le -\frac{1}{5}$   
 $-1 \le x \le -\frac{1}{5}$ 





5. 
$$f(x) = x(x^2-z)$$
  
 $f(-x) = -x((-x)^2-z)$   
 $= -x(x^2-z)$   
 $= -f(x)$   
 $= -x(x^2-z)$ 

$$f(-x) \neq f(x)$$
 in not even  
 $f(-x) = -f(x)$   
so function is odd.



b) 
$$y = |(x-3)(x+3)|$$
 symmetrical about  $y-a \times i = 0$ . Even.



Branch of y=|x-1|required to work at vintersection is y=-x+1

$$y = -x + 1$$
 0  
 $y = 2x + 3$  0  
 $() = (2)$   
 $-x + 1 = 2x + 3$ 

 $-3 \times -2$   $\times = -\frac{2}{3}$ Sub  $x = -\frac{2}{3}$  into 0  $y = -(-\frac{2}{3}) + 1$ 

7 - (3)

Point of intersection (-== 13)

c) 
$$|x-1| < 2x+3$$
  
  $x > -\frac{2}{3}$ 

9. a)



y=2-z

y > 2-x D broken line for boundary

 $x^2 + y^2 = 1$  urde radivs: 1

centre: origin (0,0) $2^2 + y^2 \le 1$   $\square$  solid line for boundary-

Union is 1 and 1 together

b) No intersection V