# SYDNEY TECHNICAL HIGH SCHOOL YEAR 12 HSC ASSESSMENT TASK 2 MARCH 2007 MATHEMATICS

# Extension 1

| Time | A | llowed: |  |
|------|---|---------|--|
|      |   |         |  |

70 minutes

Instructions:

Attempt all questions

Start each question on a new page

Show all necessary working

The marks for each question are indicated next to the question

Marks may be deducted for careless or badly arranged work

Marks indicated are a guide only and may be varied if necessary

| Name: | Teacher: |  |
|-------|----------|--|

| Question 1 | Question 2 | Question 3 | Question 4 | Question 5 | Question 6 | Total . |
|------------|------------|------------|------------|------------|------------|---------|
|            | 34.15      |            |            |            | ·          |         |
|            |            |            |            |            |            |         |

### QUESTION 1 - (9 marks)

function f(x)

a) You are given  $\int_0^a f(x)dx = A$ . Evaluate  $\int_a^a f(x) dx$  if

i) f(x) is an even function

ii) f(x) is an odd function

(b) Evaluate  $\int_0^2 (4-2x)^3 dx$ 2

c) For what values of x is  $f(x) = x^5 - 5x^4$  concave down?

2

d) The diagram shows the graph of  $f^1(x)$  which is the derivative of a certain



Given that f(0) = 0, sketch the graph of f(x)

a) Find a primitive of  $\frac{1}{2x^2}$ 

1

b)



Part of the ellipse  $\frac{x^2}{16} + \frac{y^2}{9} = 1$  is shown above

The following table gives values for the graph

 x
 0
 1
 2
 3
 4

 y
 3
 2.90
 2.60
 1.98
 0

- i) Use Simpsons rule and all 5 function values to find an approximation to the area under the curve shown above (2 dec).
- ii) If the area of the whole ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is  $\pi ab$ , use this result and your answer above to find an approximate value of  $\pi$  to 2 decimal places.
- c) Find  $\int \frac{x}{\sqrt{4-x}} dx$  using the substitution x = 4-u

#### QUESTION 3 - (8 Marks)

a) i) Show that the sum of

$$1 + 2^{a} + 2^{2a} + \dots + 2^{(n-1)a} = \frac{2^{na} - 1}{2^{a} - 1}$$

3

5



Using 100 inscribed rectangles as shown above, find an approximation for

$$\int_{0}^{1} 2^{x} dx$$

b)

you may use the result in part (i)



The sketch above shows  $y = 4 - x^2$  and y = 3x for  $x \ge 0$ 

- i) Find the co-ordinates of A and B
- ii) The shaded area is rotated around the y axis. Find the volume of the solid formed.

- a) Suppose the cubic  $f(x)=x^3+\alpha x^2+bx+c$  has a relative maximum at  $x=\alpha$  and a relative minimum at  $x=\beta$ .
  - i) Prove that  $\alpha + \beta = -\frac{2}{3}a$
  - (ij) Deduce that the point of inflexion occurs at  $x = \frac{\alpha + \beta}{2}$

b)



- i) Find the co-ordinates of A, the vertex of the parabola.
- ii) By completing the square, make y the subject of  $x=4y-y^2$
- iii) Hence or otherwise find the shaded area

#### QUESTION 5 - (8 Marks)

5

- The number of unemployed people u at time t was studied over a period of time. At the start of this period, the number of unemployed was 800 000.
  - i) Throughout the period,  $\frac{du}{dt} < 0$ .

    What does this say about the number of unemployed during the period?
  - ii) It is also observed that, throughout the period,  $\frac{d^2u}{dt^2} > 0$ . Sketch a graph of u against t.
- An isosceles trapezium ABCD is drawn with its vertices on a semicircle centre O and diameter 20cm (see diagram).
  - If EO = OF =  $\frac{x}{2}$ , show that:

$$BE = \frac{1}{2} \sqrt{400 - x^2}$$

ii) Show that the area (A cm<sup>2</sup>) of the trapezium ABCD is given by:



$$A = \frac{1}{4}(x+20)\sqrt{400-x^2}$$

(iii) Show that 
$$\frac{dA}{dx} = \frac{1}{4} \left[ \frac{400 - 20x - 2x^2}{\sqrt{400 - x^2}} \right]$$

iv) Hence find the length of BC so that the area of trapezium ABCD is a maximum.

a) i) Solve 
$$\frac{x+1}{(x-1)^2} > 0$$

For the curve 
$$y = \frac{x+1}{(x-1)^2}$$

- ii) Write down the equations of the asymptotes
- iii) Find the co-ordinates of the stationary point and determine its nature.
- iv) Sketch the curve showing the stationary point, the asymptotes and any intercepts.
- Mark on your graph, labelling clearly, the approximate position of any points of inflexion.

## Question

- a) y 2A
- b)  $\left[ -\frac{1}{8} (4-2 \times)^{4} \right]^{2}$
- = 32
- c)  $f(x) = 5x^4 20x^3$  f''(x) < 0  $20x^2(x-3) < 0$  $20x^2(x-3) < 0$

· x < 3 , x ≠ 0 correct answer x < 3



correct answer 11

sec 3 as there is

this maximum turning

point at (0,0)

.. disregard seto in

Question 2

- a) -1 +c
- $= \frac{1}{3} \left[ 3 + 4 \times 5.9 + 5 \times 56 + 4 \times 1.98 + 0 \right]$   $= \frac{1}{3} \left[ \frac{3}{3} + 4 \times 5.9 + 5 \times 56 + 4 \times 1.98 + 0 \right]$
- ii) Area = 17x3x4 # = 31T
  - TT = 9.24
- c) 2=4-u
  dx=-du

$$\int \frac{x}{\sqrt{u-x}} dx = \int (u-u) - du$$

 $= \int -44 x^{-1/2} + 4x^{1/2} dx$   $= -8x^{1/2} + \frac{2}{3}x^{3/2} + c$   $= -8 \sqrt{4-2} + \frac{2}{3} \sqrt{(4-2c)^3} + c$ 

# Question 3

(a)i) 
$$S_n = \frac{1 \cdot (2^{an} - 1)}{2^a - 1}$$

$$= \frac{2^{an} - 1}{2^a - 1}$$

(i) Area= 
$$\frac{1}{100}$$
 [2°+2°.61+...+26.99]  
=  $\frac{1}{100}$   $\times$   $\frac{2^{100\times001}-1}{2^{6.01}-1}$ 

b)i) 
$$(y-x^2=3x)$$
 $x^2+3x-4=0$ 
 $(x+4)(x-1)=0$ 
 $x=-4x$ 

ii)  $(x+4)(x-1)=0$ 
 $x=-4x$ 

ii)  $(x+4)(x-1)=0$ 
 $($ 

= 311/2 13

a) i) 
$$f(\alpha) = 3x^2 + 2ax + b$$
  
Reat  $\alpha$  and  $\beta$   
 $\alpha + \beta = -\frac{b}{3}$ 

ii) f(x)=6x+2a

$$f''(\alpha 1) = 0$$
  
 $6x + 2\alpha = 0$   
 $x = -\frac{\alpha}{3}$   
but  $\alpha = -\frac{3(x+\beta)}{2}$   
 $\therefore x = -(-\frac{3(x+\beta)}{6})$ 

$$\frac{-4}{2(-1)}$$
= 2

... Vertex (4,2)

iii) Area = 
$$\int_{0}^{4} 2 - \left[4 - 2c\right] dux$$

$$= \left[23c + \frac{2}{3}(4 - 2c)^{3/2}\right]_{0}^{4}$$

$$= \left[8 + 0\right] - \left[0 + \frac{2}{3} \cdot 8\right]$$

| ng anada ng ang ang ang ang ang ang ang ang ang                | gant a manda con manda con |
|----------------------------------------------------------------|----------------------------------------------------------------|
| Question 5                                                     | <u></u>                                                        |
| a, i) number i's                                               | Formoximum are d                                               |
| decreasing                                                     | ~                                                              |
| ii 800,000                                                     | 1. 400-202-222                                                 |
|                                                                | -2 ( x+20) (x-10).                                             |
|                                                                | .'. x x -20 as 10                                              |
| ŧ                                                              | d1312 gard 22 = -20                                            |
| b) 1) 102 = (x)2 + BE2                                         |                                                                |
|                                                                | X 5 10 15<br>A1 + 0 -                                          |
| $\beta \varepsilon = \sqrt{10^2 - \left(\frac{2}{x}\right)^2}$ |                                                                |
|                                                                | i. maxarea when                                                |
| = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                       |                                                                |
| <b>`</b>                                                       | iv).BC=10 cm                                                   |
| = 1/400-22                                                     |                                                                |
| ii) Aren= 1, [ ] 400-22 [20+22]                                |                                                                |
| = 1 (2+20) 400-20                                              |                                                                |
| 111 A = 1 20 400-22 + 2 400-22                                 |                                                                |
| 4 = 1 [20.122 (400-x2)-1/2                                     |                                                                |
| + (400-22) 12 + x. 1,-22 (400-22)                              |                                                                |



= 1/2 - 20x (400-22) 1/2- +(400-22) 1/2

