2 UNIT TEST NUMBER 5

1996

Geometric Applications of Differentiation.

QUESTION 1. (14 marks) Marks Consider the curve given by $v = x^3 - 12x + 4$. Find the coordinates of any stationary points and determine their nature. 6 Find the coordinates of any points of inflexion. (b) 3 Sketch the curve for the domain $-3 \le x \le 4$. (c) For what value(s) of x in the domain $-3 \le x \le 4$ does y have its maximum value? 1 QUESTION 2. (12 marks) What is the condition (in terms of $\frac{dy}{dr}$) for a function to be decreasing? (a) Find the values of x for which the function $y = 4 + 36x - 3x^2 - 2x^3$ is decreasing. Find a, b and c if the curve $y = x^3 + ax^2 - bx + c$ has an x-intercept at x = 1, a stationary point at x = -2, and a point of inflexion at $x = -\frac{1}{2}$. (c) Given $\frac{d^2y}{dx^2} = 4$, find y in terms of x, if (2, 9) is a stationary point. QUESTION 3. (7 marks) Three circles, two with radii r and one with radius R are formed such that the sum of their radii is 18 cm. Show that the sum, S, of the areas of the three circles is $S = \pi(6r^2 - 72r + 324)$. (a) 2 (b) Hence find the radii of the circles if the sum of the areas is a minimum. 3 What is the upper limit that the sum of the areas can be? (c) 2

This paper is issued by National Educational Advancement Programs (NEAP) to individual schools copyright free for restricted use within that school only.

QUESTION 4. (7 marks)

Marks

(a) Copy or trace the curve of y = f(x) and on the same set of axes sketch the curve of the gradient function f'(x).

(b) The given curve represents a gradient function $\frac{dy}{dx}$ relative to x of a function y = f(x).

Use this graph to determine the values of x at which the graph of the function y = f(x):

- (i) has a maximum turning point,
- (ii) has a horizontal point of inflexion,
- (iii) is concave down.

2 UNIT TEST NUMBER 5

1996

SUGGESTED SOLUTIONS

QUESTION 1

(a)
$$y = x^3 - 12x + 4$$

$$\frac{dy}{dx} = 3x^2 - 12$$

Stationary points when $\frac{dy}{dx} = 0$.

$$3x^2 - 12 = 0$$

1

$$3(x-2)(x+2) = 0$$

$$x = 2$$
 or $x = -2$

1

When
$$x = 2$$
, $y = (2)^3 - 12 \times (2) + 4$

$$= -12$$

1

When
$$x = -2$$
, $y = (-2)^3 - 12 \times (-2) + 4$

1

Stationary points at (-2, 20) and (2, -12).

$$\frac{d^2y}{dr^2} = 6x$$

When
$$x = -2$$
, $\frac{d^2y}{dx^2} = -12 < 0$: concave down. 1

.. Maximum turning point at (-2, 20).

When
$$x = 2$$
, $\frac{d^2y}{dx^2} = 12 > 0$: concave up.

$$\therefore$$
 Minimum turning point at $(2, -12)$.

· Total = 6

(b) A point of inflection occurs when $\frac{d^2y}{dr^2} = 0$ and concavity changes.

To check for change of concavity on either side Note:

$$6x = 0 \quad \therefore \quad x = 0$$

of x = 0, rather than use ε (a small positive number), you may substitute a numerical value. say x = -0.1 and x = 0.1.

At
$$x = 0 - \varepsilon$$
, $\frac{d^2y}{dx^2} = 6 \times (-\varepsilon) < 0$ (concave down)

Note: y = 4 is found by substituting x = 0 into the equation of the curve $y = x^3 - 12x + 4$.

At
$$x = 0 + \varepsilon$$
, $\frac{d^2y}{dx^2} = 6 \times \varepsilon > 0$ (concave up)

Total 3

1

1

1

1

1

- \therefore Point of inflection is at (0,4).
- (c) When x = -3, $y = (-3)^3 12 \times (-3) + 4$

When
$$x = 4$$
, $y = 4^3 - 12 \times 4 + 4$

Total = 4

- (d) y has a maximum value when x = -2, x = 4.
- Note: Determined from the graph.

Substitute $a = 1\frac{1}{2}$, b = 6 into (1)

$$1\frac{1}{2} - 6 + c = -1$$

$$c = 3\frac{1}{2}$$

$$\therefore \quad a=1\frac{1}{2}, \quad b=6, \quad c=3\frac{1}{2}$$

(c)
$$\frac{d^2y}{dx^2} = 4$$

$$\frac{dy}{dx} = 4x + c$$

1

When
$$x = 2$$
, $\frac{dy}{dx} = 0$: $0 = 4 \times 2 + c$: $c = -8$ 1

Note: Because there is a stationary point at x = 2, y = 9.

$$\therefore \frac{dy}{dx} = 4x - 8$$

$$y = 2x^2 - 8x + k$$

We use two different pronumerals for the arbitrary constants in integration.

When
$$x = 2$$
, $y = 9$: $9 = 2 \times 2^2 - 8 \times 2 + k$

$$k = 17$$

$$\therefore \quad y = 2x^2 - 8x + 17$$

1 Total = 4

QUESTION 3

(a)
$$2r + R = 18$$
 : $R = 18 - 2r$

$$S = \pi r^2 + \pi r^2 + \pi R^2$$

Before differentiating, we must express the right-hand side in terms of one pronumeral. We use the relation R = 18 - 2r.

$$= 2\pi r^2 + \pi (18 - 2r)^2$$
$$= 2\pi r^2 + \pi (324 - 72r + 4r^2)$$

$$= \pi \Big(6r^2 - 72r + 324 \Big)$$

Total = 2

(b) For minimum sum of areas,
$$\frac{dS}{dr} = 0$$
 and $\frac{d^2S}{dr^2} > 0$.

:. sum of areas of circles is minimum when

$$\frac{dS}{dr} = \pi \left(12r - 72 \right) = 0$$

$$r = 6$$

1

1

$$\frac{d^2S}{dr^2} = \pi \times 12 > 0 \quad \therefore \text{ concave up}$$

R = 18 - 2(6) = 18 - 12 = 6

$$Total = 3$$

QUESTION 2

(a) (i) A function is decreasing when
$$\frac{dy}{dx} < 0$$
.

(ii)
$$y = 4 + 36x - 3x^2 - 2x^3$$

$$\frac{dy}{dx} = 36 - 6x - 6x^2$$

When the function is decreasing,

$$36 - 6x - 6x^2 < 0$$

1

$$6x^2 + 6x - 36 > 0$$

Note: Multiply by -1, reverse the inequality.

Quadratic inequality - always sketch a graph of

$$x^2 + x - 6 > 0$$

(x+3)(x-2) > 0

.

Note:

Total = 3

the quadratic function to determine the solution.

$$(b) y = x^3 + ax^2 - bx + c$$

$$\frac{dy}{dx} = 3x^2 + 2\alpha x - b$$

$$\frac{d^2y}{dx^2} = 6x + 2a$$

When x = 1, y = 0:

$$0 = 1 + a - b + c$$

i.e.
$$a-b+c=-1$$

(1)

When
$$x = -2$$
, $\frac{dy}{dx} = 0$:

$$0 = 3 \times (-2)^2 + 2a \times (-2) - b$$

i.e.
$$4a+b=12$$

(2)

1

When
$$x = -\frac{1}{2}$$
, $\frac{d^2y}{dx^2} = 0$:

$$0=6\times(-\frac{1}{2})+2a$$

i.e.
$$2a = 3$$

$$a=1\frac{1}{2}$$

1

Substitute $a = 1\frac{1}{2}$ into (2)

$$4 \times 1\frac{1}{2} + b = 12$$

Maximum area occurs when r = 0 or r = 9.

When r = 0, $S = 324\pi$.

When r = 9, $S = \pi(6 \times 9^2 - 72 \times 9 + 324)$

 $= 162\pi$

The upper limit of the total area is 324π cm².

Note: A graph helps to visualise the relation between

QUESTION 4

(a)

Notes: From $A \rightarrow B$, gradient is negative. At B, gradient is zero (stationary point). From $B \rightarrow C$, gradient is positive and increases to maximum value at C (point of inflection). From $C \rightarrow D$, gradient is still positive but becomes zero at D (stationary point). From $D \rightarrow E$, gradient is negative, and has maximum negative value at E (a point of

From $E \rightarrow F$, gradient is still negative, but approaching zero.

Maximum turning point: (i)

$$\frac{\frac{dv}{dx} = 0}{\frac{dy}{dx} > 0} \qquad \frac{\frac{dv}{dx} < 0}$$

Maximum value at x = -8.

Horizontal point of inflexion where $\frac{dy}{dr} = 0$ and $\frac{dy}{dx}$ has the same sign on either side.

 \therefore horizontal point of inflection at x = 7. 1

(iii) Concave down when

$$\frac{d^2y}{dx^2} < 0$$
, i.e. $\frac{d}{dx} \left(\frac{dy}{dx} \right) < 0$

i.e. the derivative of $\frac{dy}{dx} < 0$ i.e. the $\frac{dy}{dx}$ curve is decreasing.

Concave down for x < -5, 2 < x < 7.

1, 1 Total = 2