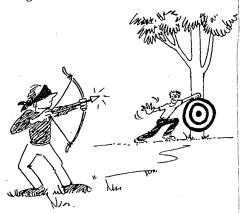

PROJECTILE MOTION

EXERCISE 6.9

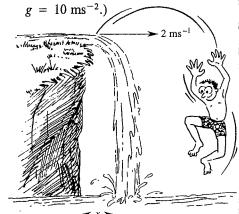
- A particle is projected at an angle of 45° and a velocity of 15 ms⁻¹.
 Neglecting air resistance and taking g as 10 ms⁻²
 - (a) derive the equation for the particle for (i) horizontal and (ii) vertical displacement (in exact form)
 - (b) find the time taken to reach the ground
- A gun is fired at an angle of 60° and with a velocity of 120 ms⁻¹. Assuming the acceleration due to gravity is 10 ms⁻² and neglecting air resistance, find
 - (a) the exact time taken for the bullet to reach its maximum height
 - (b) the bullet's maximum height
- 3. A ball is thrown from a window that is 16 m from the ground. If the angle of projection is 60° , initial velocity is 5 ms^{-1} , and $g = 10 \text{ ms}^{-2}$, find
 - (a) the time taken for the ball to land (to 1 decimal place)
 - (b) how far the ball will land from the base of the building (to 1 decimal place)
- Pham throws a ball in the air at a velocity of 8.7 ms⁻¹ and at an angle of 55°. Neglecting air resistance and using g = 9.8 ms⁻², find
 - (a) the maximum height reached (to 2 decimal places)
 - (b) how far away from Pham it will land (to 1 decimal place)



- 5. Michele throws a frisbee from the window of a building 15.3 m up. If the frisbee has an initial velocity of 8.8 ms^{-1} and is thrown at an angle of 73° , find the time taken for it to reach the ground (using $g = 10 \text{ ms}^{-2}$ and neglecting air resistance).
- 6. A missile is launched at an initial trajectory of 68° and a velocity of 1200 ms⁻¹. Neglecting air resistance and the curvature of the earth and taking the acceleration due to gravity as 9.8 ms⁻², calculate
 - (a) the time taken for its flight (to the nearest minute)
 - (b) how far away it will hit its target (to the nearest km)

- 7. (a) A particle is projected upwards at an angle to the horizontal of α with velocity u. Derive the horizontal and vertical equations
 - horizontal and vertical equations for acceleration, velocity and displacement for the flight of the particle, taking g as the acceleration due to gravity and neglecting air resistance.
 - (b) If $u = 20 \text{ ms}^{-1}$, $\alpha = 60^{\circ}$ and $g = 10 \text{ ms}^{-2}$, find the maximum height reached by the particle.
- 8. A particle is projected at a velocity of 16 ms^{-1} at an angle of elevation of θ .

- Neglecting air resistance and using $g = 10 \text{ ms}^{-2}$, find the Cartesian equation of the displacement of the particle in terms of tan θ .
- 9. Find the equations of horizontal and vertical displacement of a particle with initial velocity v ms⁻¹ and angle of projection β if the particle is projected from a point h above ground level (use g for the acceleration due to gravity and neglect air resistance).
- 10. An arrow is fired at a velocity of 24 ms^{-1} and is aimed at the centre of a target 1 m high and 35 m away. The air resistance is negligible for angles of projection less than 45°. At what angle should the arrow be fired? Use $g = 10 \text{ ms}^{-2}$.



- II. A horizontal drainpipe 6 m above sea level empties stormwater into the sea. If the water comes out horizontally and reaches the sea 2 m out from the pipe, find the initial velocity of the water, correct to 1 decimal place. Let g be 10 ms⁻² and neglect air resistance.
- 12. A particle is projected at an angle of 60° with velocity v. If it reaches the ground after 5.1 s, find the value of v correct to 2 decimal places (use $g = 9.8 \text{ ms}^{-2}$ and neglect air resistance).

- 13. A gun is aimed at a target on the ground 150 m away. If the initial velocity is 125 ms^{-1} , find the angles at which the gun could be fired to reach the target (use $g = 10 \text{ ms}^{-2}$).
- 14. Jack stands at the window of a building 6.2 m above ground level. He throws his keys straight out of the window (horizontally) and hopes that his friend Tom, who is standing 10.4 m out from the base of the building, will catch them. Ignoring air resistance and using 10 ms⁻² for the acceleration due to gravity, find the velocity at which Jack needs to throw his keys, correct to 1 decimal place.
- 15. A rocket is fired straight up in the air at a fireworks display. When it reaches 28 m high, it explodes and is projected at an angle of 60° and a velocity of 30 ms⁻¹.
 - (a) How long will it take the rocket to fall back to the ground, neglecting air resistance and taking $g = 10 \text{ ms}^{-2}$? Give your answer to the nearest second.
 - (b) How far will the rocket land from its launching site (to 1 decimal place)?
- 16. A football is kicked at 12 ms^{-1} and it just clears the goalpost 4 m high and 9 m away. Find the angle of projection through which the football is kicked (use $g = 10 \text{ ms}^{-2}$ and neglect air resistance).

17. A waterfall flows at 2 ms⁻¹ over a vertical 5 m cliff. How far out from the cliff does it fall? (Use

- 18. An object is projected with horizontal velocity 8 ms⁻¹ and vertical velocity 5 ms⁻¹. Find the range of its flight (use $g = 10 \text{ ms}^{-2}$).
- 19. A stone is projected in the air at an angle of $\frac{\pi}{6}$ and a velocity of 15 ms⁻¹. How far from a window 20 m away does it land? (Use $g = 9.8 \text{ ms}^{-2}$.)
- 20. A particle is projected at an initial velocity of 10 ms⁻¹. If the horizontal component of the velocity is 6 ms⁻¹, find
 - (a) the vertical component of velocity
 - (b) the angle of projection
 - (c) the maximum height of the
 - particle (use $g = 10 \text{ ms}^{-2}$).

ANSWERS

ANSWERS

EXERCISE 6.9

1. (a) (i)
$$x = \frac{15\sqrt{2}t}{2}$$
 (ii) $y = -5t^2 + \frac{15\sqrt{2}t}{2}$
(b) $\frac{3\sqrt{2}}{2}$ s 2. (a) $6\sqrt{3}$ s (b) 540 m 3. (a) 2.3 s

(b) 5.8 m 4. (a) 2.59 m (b) 7.3 m 5. 2.8 s
6. (a) 4 minutes (b) 102 km
7. (a)
$$\ddot{x} = 0$$
, $\dot{x} = u \cos a$, $x = ut \cos a$
 $\ddot{y} = -g$, $\dot{y} = -gt + u \sin a$,
 $y = -\frac{gt^2}{2} + ut \sin a$ (b) 15 m

8.
$$y = -\frac{5x^2}{256}(1 + \tan^2 \theta) + x \tan \theta$$

9.
$$x = vt \cos \beta$$
, $y = -\frac{gt^2}{2} + vt \sin \beta + h$

10. 20° 34′ 11. 1.8 ms⁻¹ 12. 28.86 ms⁻¹
13. 2° 45′, 87° 15′ 14. 9.3 ms⁻¹ 15. (a) 6 s
(b) 91.7 m 16. 63° 6′ or 50° 52′ 17. 2 m 18. 8 m
19. 0.12 m 20. (a) 8 ms⁻¹ (b) 53° 8′ (c) 3.2 m