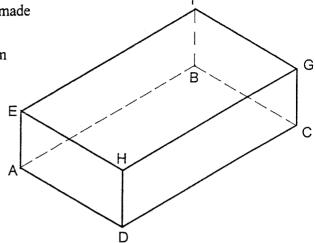
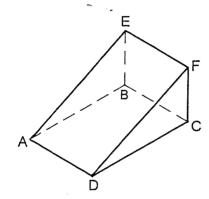
3D - Trigonometry


T/28

Drawings on this sheet are NOT to scale.

1. The drawing on the right represents a cuboidal shape made of wire with its vertices identified as ABCDEFGH.


Sizes are: AD = 15 cm AE = 10 cm CD = 25 cm Calculate

- (a) ∠ GDC
 - (b) ∠EDA
 - (c) ∠EFH
 - (d) length of face diagonal DG
 - (e) length of face diagonal BD
 - (f) length of space diagonal DF
 - (g) ∠FDG
 - (h) ∠FDB

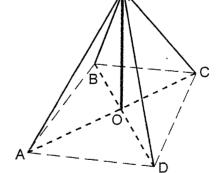
2. A cube has an edge-length of 10 cm.
Calculate the angle between its space diagonal, and one of its face diagonals.

3.

The drawing on the left shows a wedge ABCDEF. Faces ABCD and BEFC are both rectangles and are at right angles to each other.

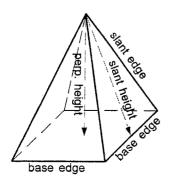
$$AB = 20 \text{ cm}$$
 $AD = 10 \text{ cm}$ $\angle FDC = 18^{\circ}$ Calculate

- (a) the height CF
- (b) the length of edge DF
- (c) ∠CAD
- (d) the length of diagonal AF
- (e) ∠FAC
- 4. The drawing on the right shows a television mast OT which has 4 stay-wires fastened to its top (at T) and to the ground at points A, B, C and D.


ABCD form a square and point O is its centre.

AD = 32 metres

The angle of elevation of T from A is 57°


Calculate

- (a) distance AO
- (b) height of the mast OT
- (c) length of one stay-wire

(d) angle of elevation of the top of the mast from a point $\,E\,$ which midway between $\,C\,$ and $\,D.$

5.

A right square-based pyramid has a base-edge of length 17 cm and a perpendicular height of 28 cm. Calculate

- (a) the length of a slant edge
- (b) its slant height
- (c) the angle between a slant edge and the base
- (d) the area of one triangular face

Excellent work! Sv-Min Lin per correction on page 2.

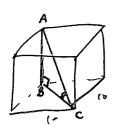
1.a)
$$\tan \angle GDC = \frac{10}{25} = \frac{2}{5}$$

 $\angle GDC = 21.8^{\circ} (foldy) /$

b)
$$tan \ LEDA = \frac{10}{15} = \frac{2}{3} \ /$$

 $LEDA = 33.7^{\circ} \ (to \ ld_{r}) \ /$

d)
$$D6 = \sqrt{25^2 + 10^2} = \sqrt{725} = 5\sqrt{29} \sqrt{25}$$


e) BD =
$$\sqrt{25^2 + 15^2} = \sqrt{850} = 5\sqrt{34}$$

$$f) \quad DF^{2} = 10^{2} + (\sqrt{850})^{2} = 950$$

$$DF = \sqrt{950} = 5\sqrt{38} \checkmark$$

9)
$$\sin FOR = \frac{187}{5437} = \frac{3}{438}$$

2.

BC = Dignal =
$$\sqrt{10^2 + 10^2}$$
 > $\sqrt{200}$ = $10\sqrt{2}$
AC = Space diagonal = $\sqrt{(10\sqrt{2})^2 + 10^2}$ = $\sqrt{300}$ = $10\sqrt{3}$
 $\cos 8\hat{C}A = \frac{BC}{AC} = \frac{10\sqrt{2}}{10\sqrt{3}} \Rightarrow 8\hat{C}A = 35.3^{\circ}(+6.14p)$.

b) DF=
$$\sqrt{(20 + 0.18)^2 + 20^2} = 21.0 \text{ cm}$$
 (to 1dp)

$$CAD = \frac{20}{10} = 2$$

 $CAD = 63.4^{\circ} (40 (dp))^{\circ}$

d)
$$AF^2 = (20 \tan 18)^2 + (\sqrt{20^2 + 10^2})^2 /$$

$$4. \text{ a)} \quad A0 = \sqrt{32^2 + 32^2} = 22.6 \text{ an m (to ldp)} \sqrt{2}$$

b)
$$fan57 = OT$$
 /

$$\sqrt{\frac{32^2+32^2}{2}} \times \tan 57 = 07 = 34.8 \text{ m} \text{ (to (dp))}$$

c)
$$A0^{2} + 0T^{2} = l^{2}$$

$$512 + 1214.046... = l^{2}$$

$$l = 41.5m (to |dp)$$

d)
$$tan \Theta = \frac{6 t}{16} m$$

$$O = \frac{65.3^{\circ}}{(4 (dp))}$$

5. Deg
$$1 l^2 = 28^2 + \left(\frac{17}{2}\right)^2 / l^2$$

 $l = 29.3 \text{ cm} \quad (40 \text{ ldp}) / l^2$

a)
$$600 \text{ h}^2 = 28^2 + \left(\sqrt{17^2 + 17^2}\right)^2 \sqrt{2}$$

$$= 928.5$$

c)
$$tan \Theta = \frac{28}{\sqrt{17^2+17^2}} = 2.3292.../$$