

CHALLENGE EXERCISE 12

- 1. Write $P(x) = x^5 + 2x^4 + x^3 x^2 2x 1$ as a product of its factors.
- 2. A polynomial $P(x) = (x b)^{T} Q(x)$.
 - (a) Show that P(b) = P'(b) = 0.
 - (b) Hence find a and b, if $(x 1)^7$ is a factor of $P(x) = x^7 + 3x^6 + ax^5 + x^4 + 3x^3 + bx^2 x 1$.
- 3. Solve $\tan^4 \theta \tan^3 \theta 3 \tan^2 \theta + 3 \tan \theta = 0$ for $0^\circ \le \theta \le 360^\circ$.
- 4. (a) Find the equation of the tangent to the curve $y = x^3$ at the point where x = -1.
 - (b) Find the point where this tangent cuts the curve again.
- 5. (a) Find the remainder when $p(x) = 2x^4 7x^3 + ax^2 + 3x 9$ is divided by 2x 1.
 - (b) If the remainder, when p(x) is divided by x + 2, is 17, find the value of a.
- 6. If α , β and γ are roots of the cubic equation $2x^3 + 8x^2 x + 6 = 0$, find
 - (a) $\alpha\beta\gamma$
 - (b) $\alpha^2 + \beta^2 + \gamma^2$
- 7. Solve $4 \sin^3 \theta 3 \sin \theta 1 = 0$ for $0^\circ \le \theta \le 360^\circ$.
- 8. Find the value of a if (x + 1)(x 2) is a factor of $2x^3 x^2 + ax 2$.
- 9. Prove that if x a is a factor of polynomial P(x), then P(a) = 0.

CHALLENGE EXERCISE 12

1.
$$P(x) = (x - 1)(x + 1)^2(x^2 + x + 1)$$

2. (a) $P(b) = (b - b)^7 Q(b)$
 $= 0$
 $P'(x) = (x - b)^7 Q'(x)$
 $+ Q(x) 7(x - b)^6$
 $P'(b) = (b - b)^7 Q'(b)$
 $+ Q(b) 7(b - b)^6$
 $= 0$
(b) $a = -8\frac{1}{5}$, $b = 2\frac{1}{3}$
3. $\theta = 0^\circ$, 45°, 60°, 120°, 180°, 225°, 240°, 300°, 360° 4. (a) $3x - y + 2 = 0$ (b) (2, 8)
5. (a) $\frac{a - 33}{4}$ (b) $a = -14$ 6. (a) -3 (b) 17
7. $\theta = 90^\circ$, 210°, 330° 8. $a = -5$
9. If $x - a$ is a factor of $P(x)$
Then $P(x) = (x - a) Q(x)$
 $\therefore P(a) = (a - a) Q(a)$
 $= 0$