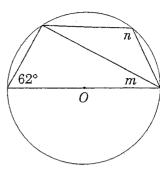
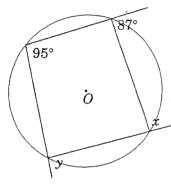
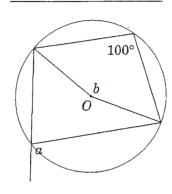
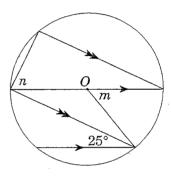

Circle geometry

Question 1 Find the value of the pronumeral(s) in each case:

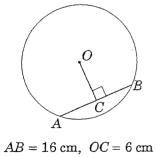

(a)


(b)

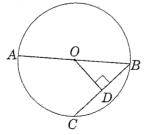

(c)


(d)

(e)

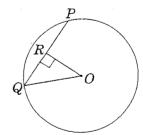


(f)



Question 2

(**a**)



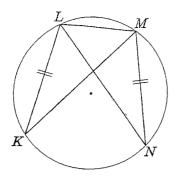
(b)

AB = 34 cm, BC = 30 cm

(c)

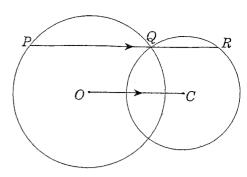
OQ = 20 cm, OR = 16 cmFind PQ.

circle.				
	··-		<u>-</u>	
		 	,	


Find the radius of the

Find OD.

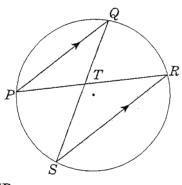
Question 3


(**a**)

KL = MNProve KM = LN and $\angle KLM = \angle LMN$.

Frove $\Delta M = LN$ and $\angle R$	$SLM = \angle LMN$.

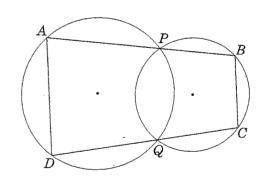
(b)

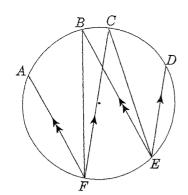


O, C are centres. $PR \parallel OC$ Prove that $PR = 2 \times OC$.

	 		•
	 	 ,	
2		-	

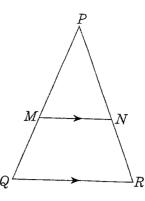
Question 4


(a)


 $PQ \parallel SR$

Prove tha	t PT = QT.	
		•

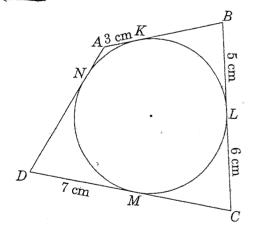
(b)



APB and DQC are straight lines. Prove $AD \parallel BC$.

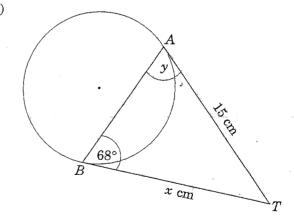
 $AF \parallel BE$, $CF \parallel DE$ Prove $\angle AFB = \angle CED$.

(d)



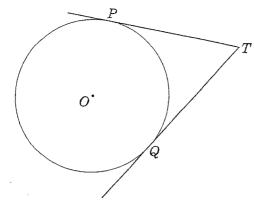
PQ = PR, $MN \parallel QR$

Prove that MNRQ is a cyclic quadrilateral.


	·
	

Question 5

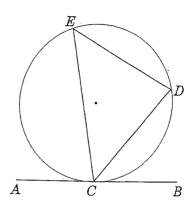
AB, BC, CD, DA are tangents. Find the perimeter of ABCD.


(b)

AT, BT are tangents. Find x and y.

A n comon o	Que	estion	6
-------------	-----	--------	---

(a)

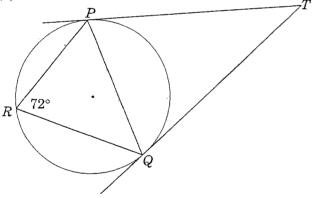


PT, QT are tangents.

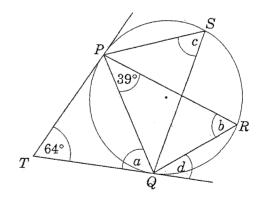
Prove that	OPTQ	is a cyclic quadrilateral

				
			······································	
		r		

(b)



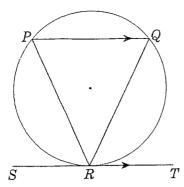
ACB is a tangent. DC bisects $\angle ECB$. Prove that DE = DC.


	,					

Question 7

(a)

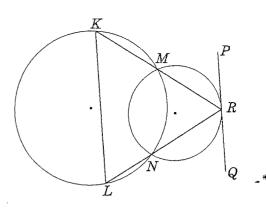
(b)


PT, QT are tangents.

Find ZPTO

Find $\angle PTQ$.	

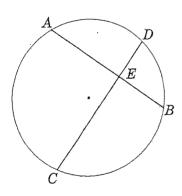
uestion 8


ι)

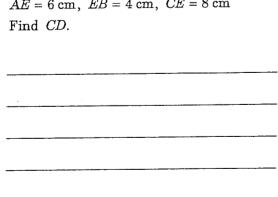
ST is a tangent.

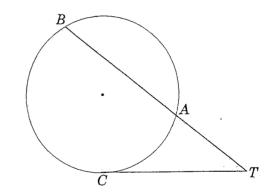
(b)



PQ is a tangent.

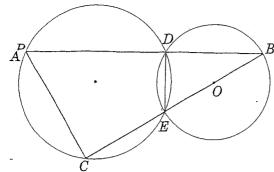

Prove that $KL \parallel PQ$.

	. •


estion 9

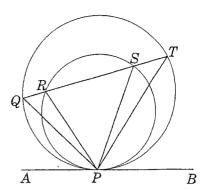
AE = 6 cm, EB = 4 cm, CE = 8 cm

(b)



CT is a tangent. AT = 4 cm, AB = 5 cm

Find CT.


Question 10

(a)

BE is a diameter of the smaller circle.

Prove that $\angle ACB = 90^{\circ}$.

AB is a tangent.

(b)

Prove that $\angle QPR = \angle SPT$.

		· · · · · · · · · · · · · · · · · · ·	

ANSWERS

33 Circle geometry

- 1 (a) 32°
 - (b) $a = 48^{\circ}$, $b = 48^{\circ}$, $c = 96^{\circ}$, $d = 132^{\circ}$
 - (c) $m = 28^{\circ}$, $n = 118^{\circ}$
 - (d) $x = 95^{\circ}$, $y = 93^{\circ}$
 - (e) $a = 100^{\circ}$, $b = 160^{\circ}$
 - (f) $m = 50^{\circ}$, $n = 65^{\circ}$
- 2 (a) 10 cm
- (b) 8 cm
- (c) 24 cm

3 and 4 Proofs

- **5** (a) 42 cm
- (b) $x = 15 \text{ cm}, y = 68^{\circ}$
- 6 Proofs
- 7 (a) 36°
- (b) $a = 58^{\circ}$, $b = 58^{\circ}$ $c = 58^{\circ}$, $d = 39^{\circ}$
- 8 Proofs
- 9 (a) 3 cm
- (b) 6 cm
- 10 Proofs