Transfelle

BRIGIDINE COLLEGE RANDWICK

3 Unit Mathematics

11

5 June 2003

Calculus and Inverse Trigonometry

Time: 45 min

All questions may be attempted.

Neatness may be taken into consideration in the awarding of marks.

- 1. Given that $f(x) = x^2 2x + 3$
 - Show that f(x) may be rewritten as $f(x) = (x 1)^2 + 2$ and state its Domain and Range. 2 m
 - b. By considering the positive real numbers such that f(x) is a one-to-one function, determine the equation of $f^{-1}(x)$.
- 2. Determine the Exact Value of $\sin (\cos^{-1}(\frac{-2}{3}))$ 3 m
- 3. Consider $f(x) = \sin^{-1}(x + 1)$
 - a. State the values of x for which f(x) is defined. 1 m
 - b. Sketch f(x).
- 4. 0 is a fixed point on a given straight line. A Particle moves along this line and its displacement x cm, from 0 at any given time, t seconds, after its start of motion is given by $x = 2 + \cos 2t$.
 - a. By finding an expression for the acceleration, explain why this motion represents Simple Harmonic Motion and state the centre of its motion.
 - b. State the first two occasions when the particle is at rest and the displacements on these two occasions.

 3 m
 - c. State the amplitude and period of the motion. 2 m

If the acceleration of a particle is $2x - 3x^2$ and v = -2 when x = 0, find v in terms of x.

2 m

A stone is thrown from a point 0 at the top of a cliff 20 metres above a beach.

The stone is thrown at an angle of elevation α above the horizontal and with a speed of 35 m/s.

The stone hits the beach at a point which is 140 m (horizontally) from the cliff.

1 m

- a. Show that the horizontal component of the velocity may be expressed as $35 \cos \alpha$.
- b. Consider this point 0 of projection as (0,0) and take gravity as $g = 10 \text{ m/s}^2$. Show that the parametric equations of motion may be given by: 2 m

$$x = 35t \cos \alpha$$
 and $y = -5t^2 + 35t \sin \alpha$.

- c. Show that $\tan \alpha = \frac{3}{4}$ or $\tan \alpha = 1$. 2 m
- d. Hence find the two possible times for which the stone is in the air, giving answers in exact form. 2 m
- 7. Newton's Law of cooling T may be given by the formula $T = P + Ae^{-kt}$, where P represents the Temperature of the surroundings, A the initial temperature of the body and t the time in hours.

a. Show that the rate at which a body loses heat is proportional to the difference between the temperature of the body and the temperature of the surrounding air.

At 1 am, Forensic scientists investigating a murder found that the temperature of a body was 22°C when it was first measured. Two hours later the temperature of the body had fallen to 19.5 °C. The room was at a constant temperature of 19°C.

- b. If normal body temperature is $37 \,^{\circ}$ C, show that $A = 3 \,^{\circ}$ C. $1 \,^{\circ}$ m
- c. Determine the time of death. 3 m

$$y'' = x^2 - 2x + 1 + 2$$

$$f(x) = (x - 1)^2 + 2$$
D: Reals

R: 47 2 +

2

$$5/ : x > 1$$

$$x = (y - 1)^{2} + 2$$

$$\pm \sqrt{x - 3} = y - 1$$

$$y = \sqrt{x - 3} + 1$$

$$51 \times \left(\frac{2}{3}\right) = 2$$

$$\cos^{-1}\left(\frac{2}{3}\right) = 2$$

$$\cos^{-1$$

$$\frac{3}{4}$$
 $f(x) = \frac{5}{10}$ $\frac{1}{2}$ $\frac{2}{10}$ $\frac{1}{10}$ $\frac{1}$

2=0 5/2 (ひ)= 垩

$$\begin{array}{lll}
4/\\
a) & \chi = 2 + \cos 2t \\
\dot{\chi} = -2 \sin 2t \\
& = -4 \cos 2t \\
& = -4 \left[x - 2 \right]
\end{array}$$
Centre $x = 2$

Since from ジ=-ハ□ inflowed by face \$ is proportions to the dutom from 20= e by at rest is =0 -2 S. ~ 2+ = 0 Zt = 0, T, 2T, .-七=の、豆、丁 3 $\chi = 2 + \cos \pi = 1$ = 2 + 6,200 = 3 x = 2 + cos 2t a=1 $T=\frac{2\pi}{2}$ 2 = TT Secul ix = co = du dx = 2202 20 = 300 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ センニャー・オナム

U = J222-223+24

$$\frac{6}{4} \cos x = \frac{2}{3}$$

$$3 = 3 \cos x$$

$$3 = 3 \cos x$$

$$is = -10$$

 $is = -10t + C$
 $is = -5t^2 + ... Usinb$

$$y = -5t^2 + 35 \sin xt$$

$$5 = -5t^{2} + 35t snd$$

$$y = x t_{nd} - \frac{5x^{2}}{35^{2}} (1 + t_{n} d)$$
(140, -20)

$$d$$
 $tan d = \frac{3}{4}$

$$x = 35 + 601 d$$
 $140 = 35 + 4$
 5

$$5_s = t$$

$$tnd = 1$$

$$cos d = \frac{1}{5}$$

$$140 = 35 + \frac{1}{52}$$

$$T = P + Ae^{-kt}$$

$$\frac{dT}{dt} = -kAe^{-kt}$$

$$= -k\left[T - P\right]$$

$$T = P + A = 3$$

$$22 = 19 + A = 3$$

$$t=2$$
 $-kt$
 $T = 19 + 3e$
 $19.5 = 19 + 3e$
 $-2k$
 $\frac{1}{2} = 3e$

1 Am - Zhas 11 pm

2