BRIGIDINE COLLEGE RANDWICK

MATHEMATICS v _ 15 June 2006
Extension 1 Paper . Time 45 min

Write your name at the top of this exam. &

Neatness may be taken into consideration in the awarding of marks. '
Theyedre 7 questions.
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1. Evaluate f ————— dx as a single expression and
0 ’ /

1 + x

by using the substitution u = 1 + x.
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a. Show that acceleration may be given by —(21—— Im
X
4 - q.\/
>l< The acceleration of a particle of mass 5 kg moving in a straight 1 “3m
’ . -2 : . '
line is given by 7 3 X The particle starts from rest at a point
X e
X = 1 from 0.
4
Show that its speed in terms of X may be give by
v=2_ V96x? + 4x - 7.
X
3. N is the number of animals in a certain population at time t years. The population size N
satisfies the equation % =-k(N - 1000), for some constant k.
[t
a. Verify by differentiation that N = 1000 + Ae™, A constant, Im
is a solution of the equation.
b. Initially there are 2500 animals but after 2 years there are only 2200 left. 2m

Find the values of A and K.

Find when the number of animals has fallen to 1300- _ 2m
(nearest half-year)
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of a cliff 20 metres above a beach.

140 m

a. Consider this point 0 of projection as (0,0) and take gravity as g = 10 m/s’.
Show that the parametric equations of motion may be given by:

x = 35tcosa  and y=-5t2 + 35tsina.

b. Show that tan o = -i— or tano = 1.

_ & Hence find the two possible times for which the stone is in the air,

giving answers in exact form.

The rise and fall of the tide at a certain harbour may be considered as

Simple Harmonic Motion. The interval of time between successive
high tides is approximately 12% hours.

The depth of the water at a certain point in the harbour is 6 metres
at low tide and 14 metres at high tide. If low tide occurs at noon,

at what time is the depth of the water in this harbour 12 metres?
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Evaluate sin (2 cos ~ E) and express your answer as a rational number.

Consider f(x) = cos™ (2x + 1)

a. State the values of x for which f(x) is defined.

b. Sketch f(x).

(not to scale) A stone is thrown from a point O at the top

~—_
\\\ The stone is thrown at an angle of elevation
AN o above the horizontal and with a speed of
20m N\ 35ms.,
\\ The stone hits the beach at a point which is
M 140 m (horizontally) from the cliff.
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