EXERCISES:

- $\overline{(1)}$
- (i) Sketch a graph of $y = \frac{1}{x^2+1}$, showing its stationary point and stating its range.

(ii) A function f(x) is defined by $f(x) = \frac{1}{x^2 + 1}$, $x \ge 0$. Explain why f(x) has an inverse function and state the domain of $f^{-1}(x)$.

- (iii) On your graph in (i), sketch y = x and $y = f^{-1}(x)$.
- (iv) Find $f^{-1}(x)$.

Sketch the graph of $y = \frac{2x}{x^2+1}$, indicating the coordinates of its stationary points. (a)

- C.E.M. YR 12 EXT.1 REVIEW OF INVERSE FUNCTIONS PAPER 1

 (b) A function, f(x), is defined by $f(x) = \frac{2x}{x^2 + 1}$, $-1 \le x \le 1$.
 - Use your graph in (a) to explain why f(x) has an inverse function,
 - On one diagram, using equal scales on both axes, sketch graphs of $y = f(x), y = x \text{ and } y = f^{-1}(x).$
 - Calculate the total area of the two regions enclosed by y = f(x) and (iii) $y = f^{-1}(x).$

(iv) Evaluate
$$\int_0^1 f^{-1}(x) dx$$
.

(v) Solve
$$f^{-1}(x) = \frac{1}{2}$$
.

$$f(x) = x - \frac{1}{x}, \quad x > 0$$

Show that f(x) has no stationary points. (a)

(b) Describe the behaviour of f(x) as x approaches the extremities of its domain.

Explain why f(x) has an inverse function, $f^{-1}(x)$. (c)

- Sketch, on the one diagram, graphs of: (d)
 - (i) y = x
 - (ii) y = f(x)
 - (iii) $y = f^{-1}(x)$

C.E.M. – YR 12 – EXT.1 REVIEW OF INVERSE FUNCTIONS – PAPER 1

(e) If
$$x = y - \frac{1}{y}$$
 and $y > 0$, simplify, in terms of y ,
$$x + \sqrt{x^2 + 4}$$
.

What is $f^{-1}(x)$? (f)

SOLUTIONS:

(1)

(i)
$$y = (x^2 + 1)^{-1}$$
. $\frac{dy}{dx} = -\frac{2x}{(x^2 + 1)^2}$
Stationary at $(0, 1)$.

- (ii) f(x) is monotonic; $0 < x \le 1$
- (iii) See part (i)

(iv)
$$x = \frac{1}{y^2 + 1}, \quad y \ge 0$$

 $\frac{1}{x} = y^2 + 1, \quad y \ge 0$
 $y^2 = \frac{1}{x} - 1 = \frac{1 - x}{x}, \quad y \ge 0$
 $y = \sqrt{\frac{1 - x}{x}}, \quad \text{since } y \ge 0$

(2)

(a)
$$\frac{dy}{dx} = \frac{(x^2 + 1)2 - (2x)(2x)}{(x^2 + 1)^2}$$
$$= \frac{2 - 2x^2}{(x^2 + 1)^2}$$
When stationary, $2 - 2x^2 = 0$
$$x = 1 \text{ and } x = -1$$

$$x = 1$$
 and $x = -1$
 $y = 1$ and $y = -1$

(b) (i) For $-1 \le x \le 1$, $\frac{2x}{x^2 + 1}$ is monotonic.

(ii)

(iii) Area of region between y = f(x) and y = x for $0 \le x \le 1$

$$= \int_0^1 \left(\frac{2x}{x^2 + 1} - x \right) dx$$
$$= \left[\ln \left(x^2 + 1 \right) - \frac{x^2}{2} \right]_0^1$$
$$= \ln 2 - \frac{1}{2}$$

Total area = $4\left(\ln 2 - \frac{1}{2}\right)$ = $4\ln 2 - 2$

(iv)
$$\int_0^1 f^{-1}(x) dx = \int_0^1 x dx - \left(\ln 2 - \frac{1}{2}\right)$$
$$= \frac{1}{2} - \left(\ln 2 - \frac{1}{2}\right)$$
$$= 1 - \ln 2$$

$$(v) \quad x = f\left(\frac{1}{2}\right)$$
$$= \frac{1}{1 + \frac{1}{4}}$$
$$= \frac{4}{5}$$

(3) _

(a)
$$f'(x) = 1 + \frac{1}{x^2}$$
, which is positive for all x.

(b) As $x \to 0$, f(x) will decrease without limit. As x increases without limit, f(x) will 'approach' x. (c) f(x) is monotonic increasing (f'(x) > 0).

(e)
$$x + \sqrt{x^2 + 4} = y - \frac{1}{y} + \sqrt{\left(y - \frac{1}{y}\right)^2 + 4}$$

$$= y - \frac{1}{y} + \sqrt{y^2 + 2 + \frac{1}{y^2}}$$

$$= y - \frac{1}{y} + \sqrt{\left(y + \frac{1}{y}\right)^2}$$

$$= y - \frac{1}{y} + y + \frac{1}{y}, \quad \text{since } y > 0$$

$$= 2y$$

(f)
$$f^{-1}(x) = y$$

= $\frac{1}{2} \left(x + \sqrt{x^2 + 4} \right)$