June 2003

HRK

## TO BE COLLECTED IN 3 SECTIONS

#### START A NEW PAGE

### PART A Marked by HRK

- 1) If tan J is negative and  $cosec J = \frac{5}{3}$ , find the value of sec J.
- 3

2) Find the value of  $\theta$  if  $cosec 42 = sec(78 - 3\theta)^{\circ}$ 

2

3) i. Show that  $\frac{1 + \cos 2A}{\sin 2A} = \cot A$ .

4

ii. Hence find the exact value of cot°15.

# 3

### START A NEW PAGE

### PART B Marked by DGS

1) Find all angles  $\theta$  with  $0 \le \theta \le 360^{\circ}$  for which  $\sin 2\theta = \sin \theta$ .

- 4
- 2) <u>i</u>. Express  $\sin 4t + \sqrt{3}\cos 4t$  in the form  $R \sin(4t + \alpha)$ , where  $\alpha$  is in degrees.
- 3
- ii. Hence, or otherwise, find the general solution in exact form of the equation  $\sin 4t + \sqrt{3}\cos 4t = 0$ .
- 3
- A yacht sailing due west, turns at A to avoid a treacherous reef and sails on a course bearing  $212^{\circ}20'$  for 2.8 nautical miles to B. It then turns and sails on a course bearing  $330^{\circ}35'$  to a point C, due west of A.
  - Find to the nearest tenth of a nautical mile, the distance BC.

4

# PART C Marked by CJL

1)



FIGURE NOT TO SCALE

Two yachts A and B subtend an angle of  $60^{\circ}$  at the base C of a cliff. From yacht A the angle of elevation of the point P, 100 metres vertically above C, is  $20^{\circ}$ . Yacht B is 600 metres from C.

- i. Calculate the length AC.
- ii. Calculate the distance between the two yachts.

3

2

2)



FIGURE NOT TO SCALE

The angle of elevation of a tower PQ of height h metres at a point A due east of it is  $I2^{\circ}$ . From another point B, the bearing of the tower is  $051^{\circ}$ T and the angle of elevation is  $I1^{\circ}$ . The points A and B are 1000 metres apart and on the same level as the base Q of the tower.

- i. Show that  $\angle AQB = 141^{\circ}$ .
- ii. Consider the triangle APQ and show that  $AQ = h \tan 78^{\circ}$
- iii. Find a similar expression for BQ.
- iv. Use the cosine rule in the triangle AQB to calculate h to the nearest metre.

TRIGONOMETRY TEST (\$) 53% 1: OMAQUE JUNE 2003 HAR PART A PARTB 1/ sin 20-2m 0 = 0 2 sin 0 60 0 - sin 0 = 0 3  $\int_{\pi}^{5} \int_{\pi}^{6} \int_$ sm0 (2000-1)=0  $sun \theta = 0$   $2 cos \theta - 1 = c$  $\Theta = 0^{\circ}, 180^{\circ}, 360^{\circ}$   $\Theta = 60^{\circ}, 300^{\circ}$ 2) Cosec 42° = sec (78-30)° 2 CO-RAT (05 :. 42+78-30=90° 2(1) R = 12+532 tan x=53  $(3) = 2 / \Delta = 60^\circ$ . . R sin(4t+d) = 2 sin(4t+60)  $\frac{3}{1}$  (i)  $\frac{1}{1} + \frac{2052A}{202A}$ (ii) 2 sin (4+ 60°) = 0  $=\frac{\chi+26\sigma^2\Theta\chi}{2\sin \Theta\cos \Theta}$ sin(4t+60°)=0 4t+60° = 180°n  $\frac{4t}{4} = \frac{1800 - 60}{4}$ = cosa = colo=RHS ...t = 45n-15 (neJ (ii)  $CoY 15^{\circ} = 1 + 6030^{\circ} / sin 30^{\circ}$ OR OTHERWISE: SINCE RHS is zero simply use tan !!! ie sin 4t = - 53  $=\frac{1+\frac{\sqrt{3}}{2}}{1}$ :  $t = -\sqrt{3}$ , t = 1800 - 60 $\frac{2+\sqrt{3}}{29^{\circ}25^{\circ}} = \frac{2+\sqrt{3}}{45^{\circ}} = \frac{2+\sqrt{3}}{45^{\circ}}$  $\therefore X = 2.8 \times sm 5746$ =2.7 nm/

