

Year 12 Extension 1 Mathematics

Mini Examination

Friday September 5, 2008

Instructions

- There are three questions, each worth 12 marks
- Attempt all questions
- Answer each question in a new booklet
- Show all necessary working
- Calculators are allowed in all sections

Time Allowed: 45 minutes

Total Marks: 36

Typeset by JSH*

Checked by HRK, SKB, CJC

Question 1 (12 Marks) STA

START A NEW BOOKLET

- (a) An F18 jet is climbing at a speed of 140 m/s at an angle of 30° to the horizontal. When the jet is 600 metres above the ocean, it drops a flare from the wing. The only force acting on the flare is gravity.
 - (i) Find the time taken for the flare to hit the ocean.
 - (ii) Calculate the maximum height reached by the flare. 2
 - (iii) What is the horizontal distance travelled by the flare?
- (b) A particle is projected horizontally with velocity, $V \text{ ms}^{-1}$, from a point h metres above the ground. Take $g \text{ ms}^{-2}$ as the acceleration due to gravity.
 - (i) Taking the origin at the point on the ground immediately below the projection point, find expressions for x and y, the horizontal and vertical displacements respectively of the particle at time t seconds.
 - (ii) Hence show that the equation of the path of the particle is given by the

equation,
$$y = \frac{2hV^2 - gx^2}{2V^2}$$
.

(iii) Find how far the particle travels horizontally from its point of projection before it hits the ground.

Question 2 (12 Marks) START A NEW BOOKLET

Marked by CJC

- (a) In the expansion of $\left(\frac{3}{x} 5x^2\right)^9$ find the term independent of x.
- (b) Angelos loves to play basketball. From the free throw line he makes 3 out of every 5 shots. For every basket he makes he scores one point.
 - (i) In a game against Trinity he had 8 free throws. What is the probability that he scored 2 points?
 - (ii) How many free throws would he need in one game so that the probability that he scores at least one point is 0.9978?
- (c) (i) Write down the binomial expansion of $(1+x)^n$ in ascending powers of x.

(ii) Show that
$$\sum_{r=1}^{n} {}^{n}C_{r} = 2^{n} - 1$$

(iii) By using integration and the answer in part (i), show that

$$\frac{1}{n+1} \sum_{r=1}^{n+1} {n+1 \choose r} = \sum_{r=0}^{n} \frac{{}^{n}C_{r}}{r+1}$$

1

Que	estion 3 (12 N	Iarks) S	START A NEW BOOKLET	Marked by J	JSH
(a)	How many different 4-digit numbers may be formed from 1, 2, 3, 4, 5, 6 if;				
	(i)	(i) none of the digits are repeated?			1
	(ii)	the digits ma	ay be repeated		1
	(iii)	the last digit	he last digit is a multiple of 3?		1
	(iv)	the number i	is even		1
(b)	There are 12 videotapes arranged in a row on a shelf in a video shop. There are 3				
	identical copies of Gone with the Wind, 4 of Tootsie and 5 of Gladiator.				
	(i) How many different arrangements of the videotapes are there?				1
	(ii) How many different arrangements are there if the videos with the same title ar				
	grouped together?				1
	(iii) The 12 videotapes are arranged at random in a row on the shelf. Find the				
	probability that the arrangement has a copy of Gone with the Wind, at one end				
	of	he row, and a	a copy of Gladiator at the other end.	en La	2
(c)	Ten people arrive to eat at a restaurant. The only seating available for them is at two				
	circular tables, one that seats six persons, and another that seats four. Using these				
	tables, how many different seating arrangements are there for the ten people?				2
d)	In how many ways can 7 people sit at a round table so that 2 particular people:				
	(i) sit next to each other?				
	(ii) are	separated?		•	1

END OF EXAMINATION ©

i. In the x direction: $\ddot{x} = 0 \Rightarrow \dot{x} = \int 0 dt = C_1$ When t = 0, $\dot{x} = V \Rightarrow C_1 = V$ $\therefore \dot{x} = V$ $x = \int V dt = Vt + C_2$ When t = 0, $x = 0 \Rightarrow C_2 = 0$ $\therefore x = Vt$

16

In the y direction: $\ddot{y} = -g \Rightarrow \dot{y} = \int -g dt = -gt + C_3$ When t = 0, $\dot{y} = 0 \Rightarrow C_3 = 0$ $\vdots \ \dot{y} = -gt$ $y = \int -gt dt = -\frac{1}{2}gt^2 + C_4$ When t = 0, $y = h \Rightarrow C_4 = h$ $\vdots \ y = -\frac{1}{2}gt^2 + h$

ii. $x = Vt \Rightarrow t = \frac{x}{V}$. Substitute into $y = -\frac{1}{2}gt^2 + h$ $y = -\frac{1}{2}g \times \left(\frac{x}{V}\right)^2 + h$ $= \frac{-gx^2}{2V^2} + h$ $= \frac{-gx^2 + 2V^2h}{2V^2}$

iii. We require y = 0 thus $\frac{-gx^2 + 2V^2h}{2V^2} = 0 \Rightarrow x^2 = \frac{2V^2h}{g} \Rightarrow x = \pm \sqrt{\frac{2V^2h}{g}}$ But the particle is moving in a positive direction so $x = V\sqrt{\frac{2h}{g}}$

)
$$T_{N+1} = {}^{n}C_{n} a^{n-h} b^{h}$$

$${}^{n}C_{k} \left(\frac{3}{2}\right)^{9-k} \left(-5n^{2}\right)^{k} \sqrt{2k}$$

$${}^{n}C_{k} 3^{9-k} x^{k-9} \left(-5\right)^{h} x^{2h}$$

$${}^{n}C_{k} 3^{9-k} x^{3h-9} \left(-5\right)^{h}$$

3 k = 9 k = 3

(b)
$$P(5) = \frac{3}{5} = P$$

(i) $P(5) = \frac{2}{5} = 9$
 $(P+9)^8$

$$= {8 \choose {\left(\frac{3}{5}\right)^2} \left(\frac{2}{5}\right)^6}$$

(ii)
$$P(a+ least one point) = 1 - P(no points)$$

 $\frac{1}{5} = 0.9978$

$$\left(\frac{2}{5}\right)^{n} = 0.0022$$

$$n = \frac{40.0022}{40.0022}$$

.. 7 shots are needed.

Marker's Notes

- (a) Done very well.

 Remember to use (-5)3, Some

 students ignored the minus sign
- (b) (i) Done well.

 Better to give answer in exact form as a fraction, instead of a rounded decimal
 - (ii) This is actually a 20 question. Don't think that every question is binomial probability.
 - c) (i) Dove Mer
- ==7654500 (11) Don't try to learn proofs
 off by heart. Let x=1 and
 use part (1)
 - (iii) When integrating you must include "+c" and then evaluate it.

Generally these types of questions involve letting x = 0 or x = 1 or x = -1Always a good idea to write out Σ notation so you know what you're trying to prove.

$$\frac{1}{3} \left(\frac{1}{3} \times 3 \right) = \left(\frac{1}{3} \right) = \left(\frac{1}{3} \right) \times \left(\frac{1}{3} \right) \times$$

(i)
$$6P_4 = 6.5.4.3 = 360$$
.

(ii) $6^4 = 236$

(iii) assuming Repetition is allowed
$$2 \times 6^3 = 430$$

If repetition were not allowed

$$2 \times 5 \times 4 \times 3 = 20$$

(IV)
$$3 \times 6^3 =$$

or

 $3 \times 5 \times 4 \times 3 =$

Nepetition
of

not allowed.

(b) (i)
$$\frac{12!}{3!4!5!} = 24.390$$

... Probability =
$$\frac{6300}{27720}$$
 = $\frac{27720}{2}$

(c)
$$10C_6 \times 5 \times 3! = 1000$$

$$(d) i) + + 2 \times 5!$$

$$(i) \quad 6 = 2 \times 5 = 2$$

Comments on Q3

3ai) ii) both done well

- III) iv) Marked correct for either interpretation with / without repetions (due to slight ambiguity of question)
- b) i) mostly done well ii) everyone got this

(11) 3/12 × 5/11 + 5/12 × 3/11 = 5/22.

- c) One mark was awarded for 5! x3! but many forgot to multiply this by 10 C 6.
- d) i) ? averybody gothese