J.M.J.

MARCELLIN COLLEGE RANDWICK

POLYLS 2 +
PARAMETRICS

YEAR 12 PRELIMINARY

ASSESSMENT TASK # 2

EXTENSION I MATHEMATICS

2006

Weighting: 40% of Preliminary Assessment Mark.					
STUDENT NAME:		MARK:	/ 27		
		PERCENTAGE:	%		
		RANK ON THIS TASK:	· / 12		
	-				
Time Allowed:	50 minutes		**		
Directions:	 Answer all questions on separate answer paper. Show all necessary working. Marks may not be awarded for careless or badly arranged work. 				
Outcomes examined:					

parametric representations.

PE3 – Solves problems involving polynomials and

PE4 – Uses the parametric representation together with differentiation to identify geometric properties of parabolas.

QUESTION ONE (2MARKS)

$P(x) = x^3 - 13x - 12$	P(x)	$=x^3$	-13x	-12
-------------------------	------	--------	------	-----

(a) Show that x - 4 is a root of P(x)

1

Marks

(b) Hence factorize P(x) in terms of its linear factors

1

QUESTION TWO (6 MARKS)

Consider the equation
$$x^3 - 7x + 4 = 0$$

Marks

(a) Show a root exists between
$$x = 0.6$$
 and $x = 0.7$

2

1

3

- (b) Using the method of "halving the interval", determine whether x = 0.6 or x = 0.7 is the best approximation to the root correct to 1 decimal place
- (c) Use Newton's Method once with an initial approximation of x = 0.5 to determine a better approximation for the root (correct to 1 decimal place)

QUESTION THREE (11 MARKS)

Marks

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are variable points on the parabola $x^2 = 4ay$

(a) Show the equation of PQ is given by:

2

$$y = \frac{(p+q)x}{2} - apq$$

(b) If PQ is a focal chord, find the value of pq

- 1.
- (c) Show the equation of the normal to $x^2 = 4ay$ at P is given by:
- 3

$$py - ap^3 = 2ap - x$$

(d) State the equation of the normal at Q

- 1
- (e) Find the locus of the point of intersection of the normals at P and Q
- 4

QUESTION FOUR (2 MARKS) Marks Solve the equation $2x^3 + 7x^2 + 4x - 4 = 0$ 2 given it has a root of multiplicity 2 (ie a double root) QUESTION FIVE (6 MARKS) Marks $P(6p, 3p^2)$ and $Q(6q, 3q^2)$ are variable points on the parabola $x^2 = 12y$. The chord PQ when produced passes through the point (4, -3) Prove that 3pq - 2(p + q) - 3 = 02 (a) The tangents at P and Q intersect at T. Show T has coordinates (b) 2 [3(p+q), 3pq]Hence find the equation of the locus of T 2

(c)

SOLUTIONS/MARKING SCHEME - 4R 12

EXTENSION I PRELIMINARY

ASSESSMENT TASK 2

Question one

(a)
$$P(4) = 0$$
: by the Factor Theorem, $x-4$ is a factor of $P(x)$

(b)
$$P(x) = (x-4)(x+3)(x+1)$$

Question Two

(a)
$$P(0.6) > 0$$
 and $P(0.7) < 0$ ①

Since $P(x)$ is continuous, $P(0.6) > 0$ and $P(0.7) < 0$, a root exists between $x = 0.6$ and 0.7 ①

(c)
$$P(0.5) = 0.625$$
 Now $a_1 = a_0 - \frac{P(a_0)}{P'(a_0)}$ $P'(x) = 3x^2 - 7$ $P'(a_0)$ = $0.5 + 0.625$

Question Three

(a) m of PQ =
$$\frac{p+q}{2}$$
 (1)

Eqn of PQ:
$$y - \alpha p^2 = p + q (x - 2ap)$$

$$2y - 2ap^2 = px + qx - 2ap^2 - 2apq$$

$$2y = (p+q)x - 2apq$$

$$-y = \frac{(p+q)x}{2} - \alpha pq$$

$$a = -\alpha \rho \alpha_{V}$$

$$y = \frac{x^2}{4a}$$

$$y' = 2x_{4a}$$

$$y-ap^2=-\frac{1}{p}(x-2ap)$$

$$-199 - 09^3 = -2 + 209$$

ie-py-ap3 =
$$2ap - x$$
 as req'd

Question Three continued ...

(e)
$$Py - ap^3 = 2ap - x$$
 (1)
 $9y - aq^3 = 2aq - x$ (2)

(1) - (2):
$$PY - qY - ap^3 + aq^3 = 2ap - 2aq$$

$$PY - qY = ap^3 - aq^3 + 2ap - 2aq$$

$$PY - qY = a(p-q)(p^2 + pq + q^2) + 2a(p-q)$$

$$Y = a(p^2 + pq + q^2) + 2a$$

subst y > (i)

$$ap(p^2 + pq + q^2) + 2ap - ap^3 = 2ap - x$$

$$\therefore \alpha = -\alpha p^2 q - \alpha p q^2$$

$$-x = -apq(p+q)$$

= Point of Intersection of Normals has coords:

$$[-apq(p+q), a(p^2+pq+q^2+2)]$$

Now
$$x = -apq(p+q)$$
 and $y = a(p^2 + pq + q^2 + 2)$

$$P+q = \frac{x}{-apq}$$

$$\frac{y}{a} = p^2 + q^2 + pq + 2$$

$$\frac{3}{4} = (p+q)^2 - 2pq + pq + 2$$

$$\frac{3}{\alpha} = \left(\frac{3}{\alpha}\right)^2 + 3$$

$$\frac{1}{\alpha} = \frac{3}{\alpha^2} + 3$$

$$x^2 + 3a^2$$

$$\therefore x^2 = ay - 3a^2$$

Question Four

$$P'(x) = 2x^{3} + 7x^{2} + 4x - 4$$

$$P'(x) = 6x^{2} + 14x + 4$$

$$= 2(3x^{2} + 7x + 2)$$

$$= 2(3x + 1)(x + 2)$$
(1)

Since p(x) has a double root, it must be x = -2

$$= P(x) = (x+2)^2(2x-1)$$

: Soins to
$$2x^3 + 7x^2 + 4x - 4 = 0$$
 are $x = -2, 1 = 0$

Question Five

(a) m of
$$PQ = \frac{3p^2 - 3q^2}{6p - 6q}$$
 Eqn of $PQ = \frac{3p^2 - 3q^2}{6p - 6q}$ $y = \frac{(p+q)x}{2} - 3pq$ 0

Now if PQ passes thru (4,-3), x = 4 and y = -3 satisfy the eqn of PQ ie. -3 = 2(p+q) - 3pq

$$3pq - 2(p+q) - 3 = 0$$

(b)
$$y = \frac{3^2}{12}$$

 $y' = \frac{3}{6}$
 $-y'(6p) = p$
 $= Eqn of Tat P$:

$$y - 3p^2 = p(x - 6p)$$

: $y = px - 3p^2$

$$y = bx - 3b^2$$

$$y = px - 3p^{2} (1)$$

$$y = qx - 3q^{2} (2)$$

$$(1) - (2): px - qx = 3p^{2} - 3q^{2}$$

$$x = 3(p+q)$$

$$-y = 3p^{2} + 3pq - 3p^{2}$$

$$= 3pq$$

$$= 3pq$$

$$= Coords of T are:$$

Juestian Five continued ...

$$(c)$$
 $x = 3(p+q)$ and $y = 3pq$

Using ean of Pa:

$$3(\frac{1}{3}) - 2(\frac{3}{3}) - 3 = 0$$

$$-4 - \frac{2x}{3} - 3 = 0$$

$$-2x - 3y + 9 = 0$$