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Directions: .
¢ Answer all questions on separate lined
¢ Show all necessary working. :
o Marks may not be awarded for carele:

or badly arranged work.

Jutcomes examined:

'E;2 — Uses multi-step deductive reasoning in a variety of contexis.

'E3 — Solves problems involving polynomials ard paramelric representations.

'E4 — Uses the parametric repr esentatlon together with differentiation to identify geometnc
roperties of parabolas.

"6 —Makes comprehensive use ofMathematlcal language dlagrams and notation for
smmunicating in a wide variety of situations:: *
[E1 — Appreciates interr elaﬁonshlps betweei 1deas drawn from different areas of Mathematlcs
(K2 — Uses inductive reasoning in the construgtion of proofs.-

I3 — Uses a variety of strategies to 111ves’r1ga[e Mathematxcal models of s1tuauons involving
rojectile motion, simple harmonic motion, or’ “exponential growth and decay.

L5 — Applies the chain rule to problems mcludmg those mvolvmg velocity and acceleratlon as
metions of displacements

QUESTION ONE (2 MARKS)

Consider the polynomial P(x) = 2x> + 3x* — kx + 12

(a) Determine the value of k£ if x + 4 is a factor of P(x)

(b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target
on the ground. The plane is flying at a constant helght of 2 km.

You may assume the displacement-time equatlons of motlon

x=Vicosd and y=:§g—t+ Vt sin@+ 2000

and that g =10ms™

Calculate the horizontal distance from the target that the plane must release the
projectile to successfully hit the target.

QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of 5cm®/s. The base radius of the
funne] is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

NOT TO SCALE

(2) Show that r =%h , giving reason(s).
(b) Show that the volume (V) of water in the cone can be expressed as: .
=L
12

(c) How fast is the water level dropping when the water is 10cm deep?

Marks




QUESTION FOUR (4 MARKS) -

Marks

The velocity of a particle in terms of its displacement is given by v =+/3x+1 where
x is the displacement in metres and v is the velocrcy in metres per second. The
particle is initially at the origin,

(a) Show that the acceleration of the palﬁcl@: is a constant, 1

(b) Find its displacement after 5 seconds S 3

(QUESTION FIVE (4 MARKS),
(2) . R
Show that /3 cos 2¢ —sin 27 =2 cos(2t -+ ,—)

(b) A particle moves in a straight line and 1ts dlsplacement x metres at any time ¢
seconds is gwen by:

x= 5+J§cole—s1112t

i) Prove that the particle’s motlon: Sl;nple Harmonic 2

ii) Between what two points is the pérticle oscillating? 1 .

QUESTION SIX (3 MARKS) |

The tempexature of a particular body satlsﬁes an equation of the form

T= B+ 4,* where Tis the temperature of the drifk i in degrees Celsius,  is the time
in minutes, A and k are constants and B i3 the tempe1atuxe of the surroundings in
degrees Celsius. i

The body cools from 90°C to 80°C in 2 minutes in a sutrounding of temperature
30°C. .

(a) Find the values of 4 and & ‘1 ’ 2

(b) Find the temperature of the body after a further 5 minutes have passed 1
(Answer correct to the nearest degree)” .-

QUESTION SEVEN (6 MARKS)

Marks
A particle is undergoing Simple Harmonic Motion, oscillating between the points P
at x =3 and Q at x = -5 on the x axis. It takes % seconds for the particle to travel
from P to Q.

(a) Write down its acceleration in terms of x 2!
“(b)  Find its maximum acceleration 1"
(c) Find its maximum speed 3

QUESTION EXGHT (4 MARKS) 0

Consider a sector of a circle of radius 1, the angle at the centre being 6

@ Show that when sin 8 = g the chord AB bisects the sector 1

(b) Investigate whether 1.8 or 2.0 would be a more satisfactory first 17
approximation “for the solution of the equation sin 6 - = =.0.

(c) Use Newton’s method once to obtain a better approxirhation of the root. (Use 2
your answer from (b) as an initial approximation). Answer correct to 2
decimal places

QUESTION NINE (4 MARKS)

P(2ap, ap®) is any point on the parabola x* = 4ay, The line k is parallel to the tangent

at P and passes through the focus, S, of the parabola.

(a) Find the equation of the line k : i 1

*(b) The line k intersects the x-axis at the paint Q. Find the coordinates of the 2

midpoint, M, of the interval QS.

(c) What is the equation of the locus of M? 1




{QUESTION TEN (5 MARKS) =

(a) Prove that:

i TR
) _2cos[x+%)_—.‘_'smx—\/§ .

if) 2 sin? x —3cos? x
tan® x -3 = — et T
cos’ x

(b) Hence evaluate

. tan®x—3tanx
m—"——=
s w

3 cos| x4
( 6 )

QUESTION ELEVEN (7 MARKS) v

A ball is fired from level ground at 20m/s,> aimiﬁg to hit as lﬁgh as it can up a wall
20m away (In this problem, take g = 10ni/s?)

(a) Prove that, for any point P(x,y) on the ball’s path
x =20 tfcos 6. and y:= 20tsin8- 57

(b) Prove that the height h on the wall obfainefd by firing the ball at an angle @is
given by . : i ' ’

h =20tan@-5sec’d

(c) Prove that

an_ 10sec? O(2 ~ tan )
dao

(d) Find the maximum height the ball ca_i; reaéh up the wall

Marks
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