MARCELLIN COLLEGE RANDWICK

YEAR 12 HSC

ASSESSMENT TASK # 1

EXTENSION I MATHEMATICS

2007

Weighting: 30% of H.S.C. Assessment Mark

	· \.			
STUDENT NA	AME:	in	MARK;	746
			PERCENTAGE:	%
•			RANK ON THIS TASK:	723

Time Allowed:

1 ½ hour

irections:

- · Answer all questions on separate lined paper.
- Show all necessary working.
- Marks may not be awarded for careless or badly arranged work.

Outcomes examined:

- PE2 Uses multi-step deductive reasoning in a variety of contexts.
- E3 Solves problems involving polynomials and parametric representations.
- E4 Uses the parametric representation together with differentiation to identify geometric reperties of parabolas.
- E6 Makes comprehensive use of Mathematical language, diagrams and notation for ommunicating in a wide variety of situations
- IE1 Appreciates interrelationships between ideas drawn from different areas of Mathematics.
- IE2 Uses inductive reasoning in the construction of proofs.
- UE3 Uses a variety of strategies to investigate Mathematical models of situations involving rojectile motion, simple harmonic motion, or exponential growth and decay.
- IE5 Applies the chain rule to problems including those involving velocity and acceleration as actions of displacement.

QUESTION ONE (2 MARKS)

a polynomial $P(x) = 2x^3 + 2x^2 + 4x + 12$

Consider the polynomial $P(x) = 2x^3 + 3x^2 - kx + 12$

(a) Determine the value of k if x + 4 is a factor of P(x)

(b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target on the ground. The plane is flying at a constant height of 2 km.

3

Marks

You may assume the displacement-time equations of motion:

$$x = Vt \cos\theta$$
 and $y = \frac{-gt^2}{2} + Vt \sin\theta + 2000$

and that $g = 10ms^{-2}$

Calculate the horizontal distance from the target that the plane must release the projectile to successfully hit the target.

QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of 5cm³/s. The base radius of the funnel is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

NOT TO SCALE

(a) Show that $r = \frac{1}{2}h$, giving reason(s).

1

(b) Show that the volume (V) of water in the cone can be expressed as:

1

$$V = \frac{1}{12}\pi h^2$$

(c) How fast is the water level dropping when the water is 10cm deep?

		Marks
x is	e velocity of a particle in terms of its displacement is given by $v = \sqrt{3x+1}$ where the displacement in metres and v is the velocity in metres per second. The ticle is initially at the origin.	
(a)	Show that the acceleration of the particle is a constant.	1
(b)	Find its displacement after 5 seconds	3
Qu.	estion Five (4 marks)	
(a)	Show that $\sqrt{3}\cos 2t - \sin 2t = 2\cos(2t + \frac{\pi}{6})$	1
b)	A particle moves in a straight line and its displacement x metres at any time t seconds is given by:	
	$x = 5 + \sqrt{3}\cos 2t - \sin 2t$	
	i) Prove that the particle's motion is Simple Harmonic	2
	ii) Between what two points is the particle oscillating?	14
Que	estion Six (3 marks)	

The temperature of a particular body satisfies an equation of the form $T = B + A_e^{-kt}$ where T is the temperature of the drink in degrees Celsius, t is the time in minutes, A and k are constants and B is the temperature of the surroundings in degrees Celsius.

The body cools from 90°C to 80°C in 2 minutes in a surrounding of temperature 30°C .

(a)	Find the values of A and k	2 ;
(b)	Find the temperature of the body after a further 5 minutes have passed (Answer correct to the nearest degree)	1

QUESTION SEVEN (6 MARKS)

		Marks
A pa	article is undergoing Simple Harmonic Motion, oscillating between the points P	
at x	= 3 and Q at x = -5 on the x axis. It takes $\frac{\pi}{2}$ seconds for the particle to travel	
	n P to Q.	
(a)	Write down its acceleration in terms of x	2
(b)	Find its maximum acceleration	1**2
(c)	Find its maximum speed	3 ·

QUESTION EIGHT (4 MARKS)

Consider a sector of a circle of radius r, the angle at the centre being $\boldsymbol{\theta}$

- Show that when $\sin \theta = \frac{\theta}{2}$ the chord AB bisects the sector
- (b) Investigate whether 1.8 or 2.0 would be a more satisfactory first approximation for the solution of the equation $\sin \theta \frac{\theta}{2} = 0$.

2

(c) Use Newton's method once to obtain a better approximation of the root. (Use your answer from (b) as an initial approximation). Answer correct to 2 decimal places

QUESTION NINE (4 MARKS)

 $P(2ap, ap^2)$ is any point on the parabola $x^2 = 4ay$. The line k is parallel to the tangent at P and passes through the focus, S, of the parabola.

- (a) Find the equation of the line k
- (b) The line k intersects the x-axis at the point Q. Find the coordinates of the midpoint, M, of the interval QS.
- (c) What is the equation of the locus of M?

QUESTION TEN (5 MARKS)

(a) Prove that:

i)
$$-2\cos\left(x+\frac{\pi}{6}\right) = \sin x - \sqrt{3}\cos x$$

ii)
$$\tan^2 x - 3 = \frac{\sin^2 x - 3\cos^2 x}{\cos^2 x}$$

(b) Hence evaluate

$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3 \tan x}{\cos \left(x + \frac{\pi}{6}\right)}$$

QUESTION ELEVEN (7 MARKS)

A ball is fired from level ground at 20m/s, aiming to hit as high as it can up a wall 20m away (In this problem, take $g = 10 \text{m/s}^2$)

(a) Prove that, for any point P(x,y) on the ball's path

$$x = 20 t \cos \theta$$
 and $y = 20 t \sin \theta - 5t^2$

(b) Prove that the height h on the wall obtained by firing the ball at an angle θ is given by

$$h = 20 \tan \theta - 5 \sec^2 \theta$$

(c) Prove that

$$\frac{dh}{d\theta} = 10\sec^2\theta(2 - \tan\theta)$$

(d) Find the maximum height the ball can reach up the wall

Marks

2 4

2007 HALF-YEARLY EXAM

ASSESSMENT TASK 1

EXTENSION | MATHS

Question One

a) If x+4 is a factor of p(x) then p(-4)=0

b)
$$2x^{2} - 5x + 3$$

$$x + 4) 2x^{3} + 3x^{2} - 17x + 12$$

$$2x^{3} + 8x^{2}$$

$$-5x^{2} - 17x + 12$$

$$-5x^{2} - 20x$$

$$3x + 12$$

$$3x + 12$$

$$P(\pi) = (x+4)(2x^2-5x+3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

Juestion Two

2000m

$$y = -\frac{10t^2}{2} + \frac{1250t \sin 0}{9} + 2000$$

low, projectile hits the ground when y=0

$$5t^2 = 2000$$

$$-t = t 20$$

then
$$t = 20$$
 $x = 1250$ (20) $\cos 0^{\circ}$

$$\frac{1}{2} = \frac{25000}{9} \text{ m} \quad \leftarrow \text{I mark}$$

Question Three

$$\frac{7}{10} = \frac{7}{20}$$

$$= \Gamma = \frac{1}{2}$$

b)
$$V = \frac{1}{3} \pi r^2 h$$

$$V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h$$

$$V = \frac{\pi h^3}{12}$$

1 mark

c)
$$\frac{dh}{dt} = \frac{dh}{dv} \cdot \frac{dv}{dt}$$

$$= \frac{4}{\pi h^2} \cdot (-5)$$

$$= -20$$
Th

.. The water level is dropping at 15 cms-1

$$V = \sqrt{3x+1}$$

$$\frac{v^2}{2} = \frac{3x}{2} + \frac{1}{2}$$

$$-\frac{d}{dn}\left(\frac{v^2}{2}\right) = \frac{3}{2}$$

$$\hat{x} = \frac{3}{2}$$

: Acc. is constant

$$\frac{dx}{dt} = \sqrt{3x+1}$$

$$\frac{dt}{dn} = \frac{1}{\sqrt{3x+1}}$$

$$: t = \int (3x+1)^{-\frac{1}{2}} dx \leq - |mark|$$

1 mark

$$\therefore t = 2(3x+1)^{\frac{1}{2}} + C$$

when
$$t = 0$$
, $x = 0$ $C = -\frac{2}{3}$

$$: t = \frac{2(3\pi+1)^k}{3} = \frac{2}{3} \in 1$$
 mark

when
$$t = 5$$
 $5 = \frac{2\sqrt{3x+1}}{3} - \frac{2}{3}$

$$=15 = 2\sqrt{3}x + 1 - 2$$

$$-\sqrt{3x+1} = \frac{1}{2}$$

Question Five

a)
$$2 \cos \left(2t + \frac{\pi}{6}\right)$$

=
$$2\cos 2t\cos \frac{\pi}{6} - 2\sin 2t\sin \frac{\pi}{6}$$
 | mark

$$= 2(\cos 2t)\left(\frac{\sqrt{3}}{2}\right) - 2(\sin 2t)\frac{1}{2}$$

b) i)
$$V = -2\sqrt{3} \sin 2t - 2 \cos 2t$$

: Particle is oscillating between) I mark

$$x=1$$
 and $x=9$

vestion Six

Jhen
$$t = 0$$
, $T = 90$ and $B = 30$

shert=2, T=80

$$-e^{-2k} = \frac{5}{6}$$

$$-2k = ln(\frac{5}{6})$$

$$\frac{1}{16} = \frac{\ln \left(\frac{5}{6}\right)}{-2} = \frac{1}{2} \ln \left(\frac{6}{5}\right) \leftarrow \frac{1}{2} \ln \left(\frac{1}{6}\right)$$

shen t= 7

Question Seven

a)
$$\ddot{x} = -4(x+1)$$
 $P = \pi$ secs
$$\frac{2\pi}{n} = \pi$$

$$1 \text{ mark } 1 \text{ mark} \qquad n = 2$$

b) Max. acc. at the extremities ie when x = - 5 (or 3)

$$5\vec{c} = -4(-4)$$

c)
$$x = -4x - 4$$

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -4x - 4$$

$$\frac{1}{2}v^2 = -2\pi^2 - 4\pi + C$$
 \(\left\) \(\left\)

$$1.17^2 = -4x^2 - 8x + 60$$
 (mark

Max. speed at C.O.M. ie. When x = -1

$$2 V^2 = -4 + 8 + 60$$

Question Eight

) Area of sector = $\frac{1}{2}r^2\theta$: $\frac{1}{2}$ Area of sector = $\frac{r^2\theta}{4}$ d Area of triangle = $\frac{1}{2}r^2\sin\theta$ = $\frac{1}{2}r^2\frac{\theta}{2}$

: Area of $\Delta = \frac{1}{2}$ Area of sector if $\sin \theta = \frac{\theta}{2}$ ie. AB bisects the sector if $\sin \theta = \frac{\theta}{2}$ | mark

Let
$$P(\theta) = \sin \theta - \frac{\theta}{2}$$

Now $P(1.8) = 0.07384763$
and $P(2) = -0.090702573$
 $= \theta = 1.8$ is the better a pprox.

1 mark

$$a_1 = a_0 - \frac{\rho(a_0)}{\rho'(a_0)}$$

$$f'(\theta) = \cos \theta - \frac{1}{2}$$

$$f'(1.8) = \cos 1.8 - \frac{1}{2}$$

$$= -0.727202094$$

$$a_1 = 1.8 + 0.07384763$$

$$0.727202094$$

Question Nine

Eqn of Tat P:
$$y-a=p(x-0)$$

$$=px-y+a=0 \leftarrow lmark$$

b) let
$$y=0$$
 : $x=-ap$
: Coords of Q are $\left(-\frac{ap}{p},0\right)$ — I mark

Mpt of QS = $\left(-\frac{ap}{2},\frac{a}{2}\right)$ — I mark

c)
$$x = -\frac{a}{2p}$$
 and $y = \frac{a}{2}$

) i) LHS =
$$-2\cos\left(x+\frac{\pi}{6}\right)$$

= $-2\left[\cos x\cos\frac{\pi}{6}-\sin x\sin\frac{\pi}{6}\right]$
= $-2\left[\frac{\sqrt{3}\cos x}{2}-\frac{\sin x}{2}\right]$
= $-\sqrt{3}\cos x+\sin x$
= $\sin x-\sqrt{3}\cos x$

ii) LHS =
$$tan^2 x - 3$$

$$= \frac{sin^2 x}{cos^2 x} - 3$$

$$= \frac{sin^2 x}{cos^2 x}$$

$$= 2HS$$

$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3 \tan x}{\cos \left(x + \frac{\pi}{6}\right)} = \lim_{x \to \frac{\pi}{3}} \frac{\tan x \left(\tan^2 x - 3\right)}{-\frac{1}{2} \left[-2 \cos \left(x + \frac{\pi}{6}\right)\right]}$$

= lini

mark r correct subst , this line

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\tan \chi (\tan^2 \chi - 3)}{\sin \chi - \sqrt{3}\cos \chi}$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos \chi} \frac{\sin^2 \chi - 3\cos^2 \chi}{\cos^2 \chi}$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-\cos \chi}{\cos \chi}$$

1 mark

continued next page ...

all continued.

1 mark

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi - \sqrt{3}\cos \chi\right) \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \frac{-2\sin \frac{\pi}{3}}{\cos^3 \frac{\pi}{3}} \left(\sin \frac{\pi}{3} + \sqrt{3}\cos \frac{\pi}{3}\right)$$

$$= -2\left(\frac{\sqrt{3}}{2}\right) \left(\sqrt{3}\right) \left(\sqrt{3}\right)$$

$$= -2\left(\frac{\sqrt{3}}{2}\right) \left(\sqrt{3}\right) \left(\sqrt{3}\right)$$

westion Eleven

$$\ddot{x} = 0$$

$$\therefore \dot{\mathbf{z}} = \mathbf{C}$$

when
$$t=0$$
, $t=0$ = $D=0$

$$t = \frac{1}{\cos \theta}$$

subst
$$t = \frac{1}{\cos \theta}$$
 into $y = -5t^2 + 20t \sin \theta$

$$y = -\frac{5}{\cos^2\theta} + \frac{20\sin\theta}{\cos\theta}$$

$$y = 20 \tan \theta - 5 \sec^2 \theta$$

$$= \dot{y} = -gt + Vsin\theta$$

Now
$$y = -\frac{9t^2}{2} + Vt \sin \theta + M$$

$$-y = -9t^2 + Vt sin0$$

$$y = -5t^2 + 20 t sin \theta$$

1 mark

all continued

c)
$$h = 20 \tan \theta - 5(\cos \theta)^{-2}$$

$$= \frac{dh}{d\theta} = 20 \sec^2 \theta + 10 (\cos \theta)^{-3} \cdot (-\sin \theta)$$
$$= 20 \sec^2 \theta - \frac{10 \sin \theta}{\cos^3 \theta}$$

=
$$20 \sec^2\theta - 10 \tan\theta \sec^2\theta$$
 | mark
= $10 \sec^2\theta (2 - \tan\theta)$

$$= 10 \sec^2\theta \left(2 - \tan\theta\right) = 0$$

$$3.0 = tan^{-1}(2)$$

Ð	ŧ	2	3
dh	/	_	9.
	~ 4	AAW	diamana kalamanana K

Now h= 20tand - 5sec20

$$h = 20(2) - 5(1+4)$$
 (since sec² $\theta = 1 + \tan^{2}\theta$)

: Max height the ball can reach up the wall is 15 m