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Directions: ) A
» Answer all questions on separate lined paper.
e Show all necessary working. :
e Marks may not be awarded for careless or badly arranged work

Outcomes examined:

PE2 — Uses multi-step deductive reasoning in a variety of contexts.

PE3 — Solves problems involving polynomials and parametric representations.

PE4 — Uses the parametric representatlon together with differentiation to identify geometnc
properties of parabolas.

PE6 —Makes comprehensive use of Mathematical language d1agrams and notation for
communicating in a wide variety of situations.

HE1 — Appreciates mterrelatlonshlps betweeh ideas drawn from different areas of Mathemahcs
HE?2 — Uses inductive reasoning in the construction of proofs.-

HE3 — Uses a variety of strategies to investigate Mathematical models of sntuatmns involving
projectile motion, simple harmonic motion, or exponential growth and decay.

HES — Applies the chain rule to problems including those involving velocity and acceleration as

functions of displacement.

QUESTION ONE (2 MARKS)

Consider the polynomial P(x) = 2x> + 3x* — kx + 12

(a) Determine the value of k if x + 4 is a factor of P(x)

(b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target
on the ground. The plane is flying at a constant helght of 2 km.

You may assume the displacement-time equatxons of motlon

— ot
x=Vicos6 and y=7g+Vl‘Sin¢9+2000

and that g =10ms™

Calculate the horizontal distance from the target that the plane must release the
projectile to successfully hit the target.
QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of Scm’/s. The base radius of the
funnel is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

NOT TO SCALE

@ Show that » =%h , giving reason(s).

(b) Show that the volume (V) of water in the cone can be expressed as:

v =L
12

(¢) How fast is the water level dropping when the water is 10cm deep?
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QUESTION FOUR (4 MARKS)
Marks

The velocity of a particle in terms of its displacement is given by v =+3x+1 where

x is the displacement in metres and v is the velocity in metres per second. The

particle is initially at the origin.

(2) Show that the acceleration of the particle is a constant. 1

(b) Find its displacement after 5 seconds 3

QUESTION FIVE (4 MARKS)
(@) , ' T
Show that /3 cos 2¢ —sin 2¢ = 2 cos(2t + —6—)

(b) A particle moves in a straight line and its displacement x metres at any time ¢
seconds is given by: :

x=5+\/50052t—sin2t

i)  Prove that the particle’s motion is Simple Harmonic 2

ii) Between what two points is the particle oscillating? 1"

QUESTION SIX (3 MARKS) [

The temperature of a particular body satisfies an equation of the form
T= B+ A, where T'is the temperature of the drink in degrees Celsius, / is the time
in minutes, 4 and k are constants and B is the temperature of the surroundings in

degrees Celsius.

The body cools from 90°C to 80°C in 2 minutes in a surrounding of temperature
30°C.

(a) Find the values of 4 and k

(b) Find the temperature of the body after a further 5 minutes have passed 1
(Answer correct to the nearest degree)

QUESTION SEVEN (6 MARKS)

A particle is undergoing Simple Harmonic Motion, oscillating between the points P

at x =3 and Q at x = -5 on the x axis. It takes % seconds for the particle to travel

from P to Q.

(a) Write down its acceleration in terms of x

(b) Find its maximum acceleration

(c) Find its maximum speed

QUESTION EIGHT (4 MARKS) 0

Consider a sector of a circle of radius r, the angle at the centre being 6

(@) Show that when sin 6 = g the chord AB bisects the séctor

(b) Investigate whether 1.8 or 2.0 would be a more satisfactory first

approximation for the solution of the equation sin 6 - g =0.
(¢) Use Newton’s method once to obtain a better approxiﬁlation of the root. (Use

your answer from (b) as an initial approximation). Answer correctto 2
decimal places

QUESTION NINE (4 MARKS)

P(2ap, ap®) is any point on the parabola x* = 4ay. The line k is parallel to the tangent
at P and passes through the focus, S, of the parabola.

(a) Find the equation of the line k&

(b) The line k intersects the x-axis at the point Q. Find the coordinates of the
midpoint, M, of the interval QS.

(c) What is the equation of the locus of M?
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QUESTION TEN (5 MARKS) /
Marks

(a) Prove that:

i
) —2005(x+%)=sinx— 3cosx

ii) 2 sin?x —3cos®x
tan* x -3 =——S——
cos” x

(b) Hence evaluate 3

. tan’x-3tanx
lim—m—
P v
3 cos| x+ =
( 6)

QUESTION ELEVEN (7 MARKS) ‘

A ball is fired from level ground at 20m/s, aiming to hit as high as it can up a wall
20m away (In this problem, take g = 10m/s?)

(a) Prove that, for any point P(x,y) on the ball’s path 20
x=201cos 0 and y=20tsin8- 5¢

(b) Prove that the height h on the wall obtained by firing the ball at an angle is 1
given by
h = 20tan@-5sec’d

(c) Prove that 1

4 10sec? 6(2—tan 6)
do

(d) Find the maximum height the ball can reach up the wall 3
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