MARCELLIN COLLEGE RANDWICK

YEAR 12 HSC

ASSESSMENT TASK # 1

EXTENSION I MATHEMATICS

2007

Weighting: 30% of H.S.C. Assessment Mark.

PERCENTAGE: %	STUDENT NAME	E:	MARK:	ı 46
	- -		PERCENTAGE:	%
RANK ON THIS TASK: / 23			RANK ON THIS TASK:	723

Time Allowed:

 $1\frac{1}{2}$ hours

Directions:

- Answer all questions on separate lined paper.
- · Show all necessary working.
- Marks may not be awarded for careless or badly arranged work.

Outcomes examined:

- PE2 Uses multi-step deductive reasoning in a variety of contexts.
- PE3 Solves problems involving polynomials and parametric representations.
- **PE4** Uses the parametric representation together with differentiation to identify geometric properties of parabolas.
- PE6 Makes comprehensive use of Mathematical language, diagrams and notation for communicating in a wide variety of situations.
- HE1 Appreciates interrelationships between ideas drawn from different areas of Mathematics.
- HE2 Uses inductive reasoning in the construction of proofs.
- HE3 Uses a variety of strategies to investigate Mathematical models of situations involving projectile motion, simple harmonic motion, or exponential growth and decay.
- **HE5** Applies the chain rule to problems including those involving velocity and acceleration as functions of displacement.

QUESTION ONE (2	MARKS)
-----------------	--------

Consider the polynomial $P(x) = 2x^3 + 3x^2 - kx + 12$ (a) Determine the value of k if x + 4 is a factor of P(x)

Marks

2

(b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target on the ground. The plane is flying at a constant height of 2 km.

You may assume the displacement-time equations of motion:

$$x = Vt \cos\theta$$
 and $y = \frac{-gt^2}{2} + Vt \sin\theta + 2000$

and that $g = 10ms^{-2}$

Calculate the horizontal distance from the target that the plane must release the projectile to successfully hit the target.

QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of 5cm³/s. The base radius of the funnel is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

- (a) Show that $r = \frac{1}{2}h$, giving reason(s).
- (b) Show that the volume (V) of water in the cone can be expressed as:
 - $V = \frac{1}{12} \pi h^3$
- (c) How fast is the water level dropping when the water is 10cm deep?

OHESTION FOUR (4 MARKS)

QUESTION FOUR (4 MARKS)	
	Marks
The velocity of a particle in terms of its displacement is given by $v = \sqrt{3x+1}$ where x is the displacement in metres and v is the velocity in metres per second. The particle is initially at the origin.	
(a) Show that the acceleration of the particle is a constant.	
(b) Find its displacement after 5 seconds	3
QUESTION FIVE (4 MARKS)	
	1
(a) Show that $\sqrt{3}\cos 2t - \sin 2t = 2\cos(2t + \frac{\pi}{6})$	1
(b) A particle moves in a straight line and its displacement x metres at any time t seconds is given by:	
$x = 5 + \sqrt{3}\cos 2t - \sin 2t$	
i) Prove that the particle's motion is Simple Harmonic	2
ii) Between what two points is the particle oscillating?	1.
QUESTION SIX (3 MARKS)	
(
The temperature of a particular body satisfies an equation of the form $T = B + A_e^{-kt}$ where T is the temperature of the drink in degrees Celsius, t is the time in minutes, A and k are constants and B is the temperature of the surroundings in degrees Celsius.	
The body cools from 90°C to 80°C in 2 minutes in a surrounding of temperature 30°C.	
(a) Find the values of A and k	2 ;

Find the temperature of the body after a further 5 minutes have passed

(Answer correct to the nearest degree)

QUESTION SEVEN (6 MARKS)

Marks A particle is undergoing Simple Harmonic Motion, oscillating between the points P at x = 3 and Q at x = -5 on the x axis. It takes $\frac{\pi}{2}$ seconds for the particle to travel from P to Q. Write down its acceleration in terms of x 2 . . Find its maximum acceleration 3 Find its maximum speed QUESTION EIGHT (4 MARKS)

Consider a sector of a circle of radius r, the angle at the centre being θ

- Show that when $\sin \theta = \frac{\theta}{2}$ the chord AB bisects the sector
- Investigate whether 1.8 or 2.0 would be a more satisfactory first approximation for the solution of the equation $\sin \theta - \frac{\theta}{2} = 0$.

1 .

1

2

(c) Use Newton's method once to obtain a better approximation of the root. (Use your answer from (b) as an initial approximation). Answer correct to 2 decimal places

QUESTION NINE (4 MARKS)

 $P(2ap, ap^2)$ is any point on the parabola $x^2 = 4ay$. The line k is parallel to the tangent at P and passes through the focus, S, of the parabola.

- (a) Find the equation of the line k
- (b) The line k intersects the x-axis at the point Q. Find the coordinates of the midpoint, M, of the interval QS.
- (c) What is the equation of the locus of M?

QUESTION TEN (5 MARKS)

Marks

3

2 6

1

3

(a) Prove that:

i)
$$-2\cos\left(x+\frac{\pi}{6}\right) = \sin x - \sqrt{3}\cos x$$

ii)
$$\tan^2 x - 3 = \frac{\sin^2 x - 3\cos^2 x}{\cos^2 x}$$

(b) Hence evaluate

$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos\left(x + \frac{\pi}{6}\right)}$$

QUESTION ELEVEN (7 MARKS)

A ball is fired from level ground at 20m/s, aiming to hit as high as it can up a wall 20m away (In this problem, take $g = 10m/s^2$)

(a) Prove that, for any point P(x,y) on the ball's path

$$x = 20 t \cos \theta$$
 and $y = 20 t \sin \theta - 5t^2$

(b) Prove that the height h on the wall obtained by firing the ball at an angle θ is given by

$$h = 20\tan\theta - 5\sec^2\theta$$

(c) Prove that

$$\frac{dh}{d\theta} = 10\sec^2\theta(2 - \tan\theta)$$

(d) Find the maximum height the ball can reach up the wall

2007 HALF-YEARLY EXAM

ASSESSMENT TASK I

EXTENSION | MATHS

Question One

a) If
$$x+4$$
 is a factor of $P(x)$ then $P(-4)=0$

b)
$$2x^{2}-5x+3$$

$$x+4)2x^{3}+3x^{2}-17x+12$$

$$2x^{3}+8x^{2}$$

$$-5x^{2}-17x+12$$

$$-5x^{2}-20x$$

$$3x+12$$

$$3x+12$$

$$P(x) = (x+4)(2x^2-5x+3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

Question Two

$$y = -\frac{10t^2}{2} + \frac{1250t\sin 0}{q} + 2000$$

Now, projectile hits the ground when y=0

$$5t^2 = 2000$$

when
$$t = 20$$
 $x = 1250$ (20) $\cos 0^{\circ}$

$$25000 \text{ m} \leq 1 \text{ mark}$$

Question Three

a) Using similar
$$\Delta s$$
:
$$\int_{0}^{\infty} = \frac{1}{20}$$

$$\vdots \quad r = \frac{1}{2}$$
I mark

b)
$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h$$

$$V = \frac{\pi h^3}{12}$$

c)
$$\frac{dh}{dt} = \frac{dh}{dv} \cdot \frac{dv}{dt}$$

$$= \frac{4}{4} \cdot (-5)$$

$$= -20$$
Th²

When
$$h=10$$
, $dh = -\frac{1}{5\pi}$ \leftarrow Imark

.. The water level is dropping at 15 cms-1

Question Four

a)
$$V = \sqrt{3x+1}$$

$$\frac{y^2}{2} = \frac{3x}{2} + \frac{1}{2}$$

$$-\frac{d}{dn}\left(\frac{V^2}{2}\right) = \frac{3}{2}$$

$$\therefore \ddot{\chi} = \frac{3}{2}$$

: Acc. is constant

b)
$$\frac{dx}{dt} = \sqrt{3x+1}$$

$$\frac{dt}{dx} = \frac{1}{\sqrt{3x+1}}$$

$$: t = \int (3x+1)^{-\frac{1}{2}} dx \leq - |mark|$$

1 mark

$$: t = \frac{2(3x+1)^{\frac{1}{2}}}{3} + C$$

when
$$t = 0$$
, $x = 0$: $C = -\frac{2}{3}$

$$2t = \frac{2(3\pi + 1)^{\frac{1}{2}}}{3} = \frac{2}{3}$$
 (mark

when
$$t=5$$
 $5=\frac{2\sqrt{3}x+1}{3}-\frac{2}{3}$

$$-15 = 2\sqrt{3}x + 1 - 2$$

$$-\sqrt{3x+1} = \frac{1}{2}$$

Question Five

a)
$$2 \cos \left(2t + \frac{\pi}{6}\right)$$

$$= 2(\cos 2t)(\frac{\sqrt{3}}{2}) - 2(\sin 2t) \frac{1}{2}$$

b) i)
$$V = -2\sqrt{3} \sin 2t - 2 \cos 2t$$

$$= -4 \left(\sqrt{3} \cos 2t - \sin 2t \right)$$

: Particle is oscillating between) I mark

$$x=1$$
 and $x=9$

1 mark

Question Six

a)
$$T = B + Ae^{-bt}$$

when t=0, T=90 and B=30

when t= 2, T=80

$$e^{-2k} = \frac{5}{6}$$

$$= -2k = ln(\frac{5}{6})$$

$$k = \frac{\ln (5/6)}{-2} \quad \text{or} \quad \frac{1}{2} \ln \left(\frac{6}{5}\right) \quad \text{Imark}$$

when t= 7

Question Seven

a)
$$\ddot{x} = -4(x+1)$$
 $P = \pi$ secs
$$\frac{2\pi}{n} = \pi$$

$$1 \text{ mark } 1 \text{ mark } \therefore n = 2$$

b) Max. acc. at the extremities ie. when x = -5 (or 3)

$$\dot{x} = 16$$

c)
$$\ddot{x} = -4x - 4$$

$$\frac{d}{dx}\left(\frac{1}{2}\sqrt{2}\right) = -4x - 4$$

when
$$x = 3, v = 0$$
 . $C = 30$

$$V^2 = -4x^2 - 8x + 60$$
 = 1 mark

Max. speed at C.O.M. ie. when x = -1

Question Eight

- a) Area of sector = $\frac{1}{2}r^2\theta$: $\frac{1}{2}$ Area of sector = $\frac{r^2\theta}{4}$ and Area of triangle = $\frac{1}{2}r^2\sin\theta$ = $\frac{1}{2}r^2\frac{\theta}{2}$
 - : Area of $\Delta = \frac{1}{2}$ Area of sector if $\sin \theta = \frac{\theta}{2}$ ie. AB bisects the sector if $\sin \theta = \frac{\theta}{2}$

1 mark

b) Let
$$P(\theta) = \sin \theta - \frac{\theta}{2}$$

New $P(1.8) = 0.07384763$
and $P(2) = -0.090702573$
 $\theta = 1.8$ is the better approx.

1 mark

c)
$$a_1 = a_0 - \frac{\rho(a_0)}{\rho(a_0)}$$

$$f'(\theta) = \cos \theta - \frac{1}{2}$$

$$f'(1.8) = \cos 1.8 - \frac{1}{2}$$

$$= -0.727202094$$

Question Nine

Eqn of Tat P:
$$y-a=p(x-0)$$

$$=px-y+a=0 \leftarrow |mark|$$

b) let
$$y=0$$
: $x=-a/p$
: Coords of Q are $\left(-a/p,0\right)$ — I mark

Mpt of QS = $\left(-\frac{a/p}{2},\frac{a}{2}\right)$ — I mark

c) $x=-\frac{a}{2p}$ and $y=\frac{a}{2}$

a) i) LHS =
$$-2 \cos \left(x + \frac{\pi}{6}\right)$$

= $-2 \left[\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6}\right]$
= $-2 \left[\frac{\sqrt{3}\cos x}{2} - \frac{\sin x}{2}\right]$ | mark
= $-\sqrt{3}\cos x + \sin x$
= $\sin x - \sqrt{3}\cos x$

ii) LHS =
$$tan^2x - 3$$

$$= \frac{sin^2x}{cos^2x} - 3$$

$$= \frac{sin^2x - 3cos^2x}{cos^2x}$$

$$= 2HS$$

b)
$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos \left(x + \frac{\pi}{6}\right)} = \lim_{x \to \frac{\pi}{3}} \frac{\tan x \left(\tan^2 x - 3\right)}{-\frac{1}{2} \left[-2\cos\left(x + \frac{\pi}{6}\right)\right]}$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\tan \chi (\tan^2 \chi - 3)}{\sin \chi - \sqrt{3}\cos \chi}$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos \chi} \frac{\sin^2 \chi - 3\cos^2 \chi}{\cos^2 \chi}$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-\cos \chi}{\cos \chi} \frac{\sin^2 \chi - 3\cos^2 \chi}{\cos^2 \chi}$$

continued next page ...

a10 continued.

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi - \sqrt{3}\cos \chi\right) \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \frac{-2\sin \frac{\pi}{3}}{\cos^3 \frac{\pi}{3}} \left(\sin \frac{\pi}{3} + \sqrt{3}\cos \frac{\pi}{3}\right)$$

$$= -2\left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right)$$

$$= -24$$

I mark for correct answer

Question Eleven

$$\dot{x} = C$$

I mark each for correctly deriving eans

b) when
$$x=20$$

$$t = \frac{1}{\cos \theta}$$

subst
$$t = \cos\theta$$
 into $y = -5t^2 + 20t \sin\theta$

$$\therefore y = -\frac{5}{\cos^2\theta} + \frac{20 \sin\theta}{\cos\theta}$$

1 mark

· = -9

= y = - gt + k

: R = Vsin0

When t=0, 1 = Vsin0

 $\dot{y} = -gt + Vsin\theta$

Now $y = -gt^2 + Vt sin \theta + M$

when t=0, y=0 = M=0

= y = - gt * + Vt sin 0

since q = 10 and V = 20

 $H = -5t^2 + 20 + \sin\theta$

all continued

c)
$$h = 20 \tan \theta - 5(\cos \theta)^{-2}$$

$$= \frac{dh}{d\theta} = 20 \sec^2 \theta + 10 (\cos \theta)^{-3} \cdot (-\sin \theta)$$

$$= 20 \sec^2 \theta - \frac{10 \sin \theta}{\cos^3 \theta}$$

=
$$20 \sec^2\theta - 10 \tan\theta \sec^2\theta$$
 | mark
= $10 \sec^2\theta (2 - \tan\theta)$

$$10 \sec^2\theta (2 - \tan\theta) = 0$$

$$2 - \tan \theta = 0$$

$$\tan \theta = 2$$

$$\tan \theta = 2$$

$$\tan \theta = 2$$

$$\therefore ton \theta = 2$$

$$3.0 = \tan^{-1}(2)$$

Э	ŀ	2	3
dh	1	—	•

- MAX! < I mark

$$h = 20(2) - 5(1+4) \leftarrow \left(\frac{\sin \alpha}{\sec^2 \theta} = 1 + \tan^2 \theta\right)$$

$$= 40 - 25$$

: Max height the ball can reach up the wall is 15 m