

Student	Number:	

Extension I Mathematics Assessment Task 3 6 June-2007

Time allowed: 55 minutes

General Instructions

- Attempt ALL questions
- Write your NAME or Student NUMBER at the top of this page and on any extra writing paper used
- Answer the questions in the spaces provided in this paper

Questions

Marks

Question 1.

The diagram shows a parabolic drinking cup of height 12 cm and radius 8 cm. The cup is being filled with water at a constant rate of 20 cm 3 per second. The height of the water at time t seconds is h cm and the radius is r cm.

Using similar triangles, show that $r = \frac{2}{3}h$

(1m)

(ii) Find the rate at which the height is increasing, when the height of the water level is 10 cm. Leave your answer in terms of π .

(Volume is given by
$$V = \frac{1}{3}\pi r^2 h$$
) (3m)

Question 2.

The rate at which a body cools in air is assumed to be proportional to the difference between its temperature T and the constant temperature S of the surrounding air. This can be expressed by the differential equation

$$\frac{dT}{dt} = k(T - S),$$

where t is the time in hours and k is a constant.

(i) Show that $T = S + Ae^{tt}$, where A is a constant is a solution of the differential equation. (1m)

A heated body cools from 90° c to 60° c in 2 hours. The surrounding air temperature S the body is 25° C.

- (ii) Show that $T = 25 + 65e^{-0.3095i}$ (3m)
- (iii) Find the time taken for the body to have a temperature of 30°C (2m)
- (iv) What is the limiting value of the temperature. (1m)
- (v) Draw a sketch of the equation relating T in terms of t. (2m)

Question 3.

The velocity of a particle travelling in a straight line is given by v = 5x, where x is the displacement from the origin.

- (i) Given that initially the particle has a velocity of 5metres per second, find an expression for x, the displacement of the particle in terms of t, the time. (4m
- (ii) Find an expression of acceleration a of the particle in terms of t, the time.

(1m)

Question 4.

A ladder 5 metres in length is leaning against a wall. It is slipping down the wall at the rate is 0.2 metres per second. Find the rate at which its foot is slipping on the floor when its foot is 3 metres away from the wall.

(4m)

Question 5

The acceleration of a particle in motion is given by

$$\frac{d^2x}{dt^2} = 4 - 2x$$

The particle has a velocity of 4 metres per second at the point x=1.

- (i) Show that the velocity of the particle is given by $v^2 = 2 (9 (x 2)^2)$ (3m)
- (ii) Find the centre, the end points and the amplitude of the motion (3m)
- (iii) Find the period of motion. (1m)

Question 6.

The diagram shows the path of a projectile launched with a velocity of 40 metres per second at an angle of elevation θ to the horizontal from the top of a building 50 metres high. The acceleration due to gravity is 10 metres per second per second.

(i) Show that

$$x = (40 \cos \theta) t$$
 and $y = -5t^2 + (40 \sin \theta) t + 50$ (2m)

- (ii) The maximum height reached is 90 metres from the ground. Prove that the angle of projection is 45° (3m)
- (iii) Find only the magnitude of the velocity of the particle when $t=\sqrt{2}$ (2m)

End of Paper.

Question 2 dt = k(1-5) A.K-e t=2. T=60 () T=90 90 = S + Ae 21c. 25 + 65 e 35°= 65°e 1~ 357 64 -0:3095 -0.2095 r. 25 + 65 € -0.3095-t ,411 25-+65 0.3091- 61 = 8.29 hm.

1 V = 4x-x+5 8X-2X+10 ar x = 2 ; for dx = -2(x-2) Coulie at end 0 =0 9-12-2)2=0 X = 5,-1 auglitude v5 3 =: Va II. peus. en'ad = Question 6 x = 0 . y=400ml x = 40000 2 = 40 Cast = -10E+4USinQ x=0 whet=0 : (= v 1. n= (40 aso) (-

•	
At max dr; y'=0.	$-\left(\frac{1}{2}\right)$
-10t + 40Sin0 = 0	_
	-(I)
t = 45/h 0.	2/
Cut in M.	
Sub in y:	_
2	
90 = -5 (45100) + (405100) (4510).	1.50
	()
70 Coal20 11 20220	
$40 = -80 \sin^2 \theta + 160 \sin^2 \theta$	-
= 80 S12-Q	
Sih20 = 1	- A
2	·
Sin Q = + 1	
	ر ماء
Dz 45° (prihie c	
acul 4 a	roff.e
1) = (40 coso) a 4	•
40 - 20/2	
3 - X	
y = -10K/+ +40Sina	
Mas + 40 - 201 = 5	<u></u>
= - 1002 + 40 = 20 = 20	\
= 2010 -40 1012.	. ,
<u> </u>	
Q2 = 212+y2 800+200	
U = (20/4) +(10/4) = 30/2 50	10/10
0 = 1(avy) Thois = 30 1 - 1	1011