APPLICATION OF CALCULUS TO THE PHYSICAL WORLD

Exercises

į

- 1. The mass in grams of a melting iceblock is given by the formula $M = 5 t^2$ where t is time in minutes. Show that the rate at which the iceblock is melting is given by R = -2t g min⁻¹ and find the rate at which it is melting after 2 minutes.
- 2. The rate of change in velocity over time is given by $\frac{dv}{dt} = 8 + t t^3$. If the initial velocity is -3 cm s^{-1} find the velocity after 10 s.
- 3. The rate of flow of wheat into a silo is given by R = 2 + 6t m³ h⁻¹. If there is 10 m³ of wheat initially in the silo, how much is there after 4 hours?
- 4. The surface area in cm² of a balloon being inflated is given by $S = t^3$ where t is time in seconds. Find the rate of increase in the balloon's surface area after 5 s.
- 5. A point moves along the curve $y = \frac{1}{x}$ such that the x-coordinate changes at a rate of 2 units per second. At what rate is the y-coordinate decreasing when x = 5?
- 6. An ice cube with sides x mm is melting so that its sides are decreasing at 1 mm s⁻¹. What is the rate of decrease in volume when the sides are 150 mm?
- 7. A cone has a volume given by $V = \frac{3\pi h^2}{10}$, where h is the height of liquid in the cone. If the height of liquid is increasing at a rate of 4 cm s⁻¹, find the rate of increase in volume when the height of liquid is 15 cm.
- 8. The area of an equilateral triangle is increasing at the rate of $3 \text{ cm}^2 \text{ s}^{-1}$.
 - (a) Show that the area of the triangle is given by $A = \frac{\sqrt{3}x^2}{4}$, where x is the side of the triangle.
 - (b) Find the exact rate of increase of the side of the triangle when it has sides of 20 cm.
- 9. The population in a town is increasing at an annual rate of 5.3%, i.e. $\frac{dP}{dt} = 0.053 P$.

If the population is now 36 500, find:

- (a) a formula for the population growth;
- (b) what the population will be in 3 years' time;
- (c) how long it will take for the population to reach 100 000.

- 10. An object is cooling down according to the formula $T = T_0 e^{-kt}$, where T is temperature in degrees Celsius and t is time in minutes. If the temperature is initially 50°C and the object cools down to 43°C after 15 minutes, find:
 - (a) its temperature after an hour;
 - (b) how long it takes to cool down to 20°C.
- 11. The mass (in grams) of a radioactive substance is given by $M = 50 e^{-0.12t}$ where t is time in years. Find:
 - (a) the initial mass;
 - (b) the mass after 5 years;
 - (c) the rate of decay after 5 years;
 - (d) the half-life of the substance (time taken to decay to half its mass).
- 12. The number of bacteria in a culture increased from 1500 to 3500 in 2 hours. If the rate of bacterial growth is proportional to the number of bacteria at that time, find:
 - (a) a formula for the number of bacteria;
 - (b) the number of bacteria after 7 hours;
 - (c) when there are 1000000 bacteria.
- 13. An object heated to 50°C is placed in a room where the temperature is a constant 22°C.
 - (a) If the object cools to 47° C after 2 minutes, show that $T = 22 + 28 e^{-0.0567t}$.
 - (b) When will it reach 25°C?
- **14.** (a) Show that $N = P + Ae^{kt}$ is a solution of

$$\frac{dN}{dt} = k(N - P),$$

where k, P and A are constants.

(b) The number of bacteria in a culture is given by:

$$\frac{dN}{dt}=k(N-1000).$$

If 2500 bacteria increase to 3000 bacteria after 5 hours, find the time taken to double the initial bacteria population.

15. Show that $x = 5 + Ae^{3t}$ is a solution of

$$\frac{dx}{dt} = 3(x - 5).$$

If x = 9 when t = 1, find A to 3 significant figures. Hence find t when x = 20.

- 16. The rate of change of velocity of a particle is given by $\frac{dv}{dt} = -k(v 10)$, where k is a constant.
 - (a) Show that a solution of this differential equation is $v = 10 + Ae^{-kt}$.
 - (b) If the initial velocity is 30 m s^{-1} and after 3 s the velocity is 25 m s^{-1} , find the values of A and k.
 - (c) Calculate when the velocity reaches 15 m s⁻¹.
 - (d) What velocity does the particle tend to as t approaches infinity?

- 17. If displacement is given by $x = \log_e (t^2 + 3)$, where x is in centimetres and t is in seconds, find:
 - (a) the acceleration after 2 s;
 - (b) the initial position of the particle (correct to 3 decimal places);
 - (c) the exact time when the particle is 5 cm to the right of the origin (O).
- 18. Displacement of a particle is given by

$$s = t^3 - 4t^2 + 3t$$

where s is in metres and t is in seconds.

- (a) Find the initial velocity.
- (b) Find the times when the particle is at the origin.
- (c) Find the acceleration after 4 s.
- 19. The displacement of a particle from the origin is given by $x = e^{3t} + 5$ (x in cm, t in seconds).
 - (a) Find equations for the velocity \dot{x} and acceleration \ddot{x} of the particle.
 - (b) Find the initial acceleration.
 - (c) Show that $\ddot{x} 5\dot{x} + 6x = 30$.
- 20. The height of a projectile is given by

$$\hat{h}=10+3t-t^2,$$

where height is in metres and time is in seconds.

- (a) Find the maximum height reached.
- (b) Find the velocity after 2 s.
- (c) Find the initial height.
- (d) How far did the projectile travel in the first 2 s?
- 21. The acceleration of a particle is given by $a = -10 \sin 5t \cos^{-2}$. If the initial velocity is 6 cm s⁻¹ and the particle is 2 cm to the left of O, find the displacement after π s.
- 22. The velocity of a particle is given by

$$\dot{x} = \frac{1}{2t + 7} \,\mathrm{m} \,\mathrm{s}^{-1}.$$

If the particle is initially at the origin, find its displacement after 3 s (correct to 2 significant figures).

23. The acceleration of an object is given by

$$a = e^t + 12 \,\mathrm{m \, s}^{-2}$$
.

If initially x = 1 and v = -2, find x when t = 3(correct to 3 significant figures).

24. The velocity of a particle is given by

$$v = 4t - 3 \,\mathrm{cm}\,\mathrm{s}^{-1}$$
.

If the particle is 3 cm from O after 5 s, find the displacement after 10 s.

25. The motion of a particle is given by $\ddot{x} = -e^x$. Given that the velocity is 2 m s^{-1} when x is at the origin, find the velocity when x is 1 m to the right of the origin.

- 26. The acceleration of a particle which starts at rest 6 cm to the right of O and moves towards O over time t seconds is given by $a = -x^2$.
 - (a) Find the equation for velocity in terms of the particle's displacement from O.
 - (b) At what velocity is the particle travelling when it reaches O?
- 27. The acceleration of a particle is given by

$$\ddot{x} = 2\cos \pi x \,\mathrm{m\,s}^{-2}.$$

If the particle is initially at the origin with velocity

- (a) find the velocity when the particle is $\frac{1}{4}$ m from the origin;
- (b) show that the particle is never at rest.
- 28. The velocity of a particle is given by:

$$\frac{dx}{dt} = 2x \,\mathrm{cm}\,\mathrm{s}^{-1}.$$

If the particle is initially at rest 1 cm to the right of the origin:

- (a) find the particle's displacement after 2 s;
- (b) calculate the velocity after 2 s;
- (c) show that the particle is never at the origin;
- (d) show that acceleration a = 4x.
- 29. (a) A particle is projected upwards at an angle to the horizontal of α with velocity u. Derive the horizontal and vertical equations for acceleration, velocity and displacement for the flight of the particle.
 - (b) If $u = 40 \text{ m s}^{-1}$, $\alpha = 60^{\circ}$ and $g = 10 \text{ m s}^{-2}$, find the maximum height reached by the particle (neglecting air resistance).
- 30. A particle is projected at a velocity of 10 m s⁻¹ at an angle of elevation of θ . Neglecting air resistance and using $g = 10 \text{ m s}^{-2}$, find the Cartesian equation of the displacement of the particle in terms of tan θ .
- 31. A ball is thrown from a window which is 100 m from the ground. If the angle of projection is 30° and initial velocity 18 m s⁻¹, find:
 - (a) the time taken for the ball to land;
 - (b) how far the ball lands from the base of the building (to the nearest m).
- 32. A horizontal drainpipe 5 m above sea level empties stormwater into the sea. If the water comes out horizontally and reaches the sea 3 m out from the pipe, find the initial velocity of the water. Let $g = 10 \text{ m s}^{-2}$ and neglect air resistance.

33. A particle's displacement is given by

 $x = 5 \cos (2t + \frac{\pi}{4})$ cm at time t seconds.

- (a) Show that the particle is moving in SHM.
- (b) Find the times at which the particle is at the origin.
- (c) Write down the period of the motion.
- (d) Find the maximum displacement.
- 34. Show that a particle is moving according to simple harmonic motion if its displacement is given by:

$$x = 3\cos 2t + 4\sin 2t,$$

where x is in metres and t is in seconds. Find its maximum speed.

35. A particle is moving in SHM and its acceleration is given by

$$\ddot{x} = -x$$
.

- (a) Show that $x = 7 \sin(t + \pi)$ is a possible equation for the displacement of the particle.
- (b) Where is the particle when the velocity is 7 cm s^{-1} ?
- (c) Write down the amplitude and period of the motion.
- 36. A particle is moving in SHM with acceleration

$$\frac{d^2x}{dt^2} = -4x \,\mathrm{mm\,s^{-2}}.$$

If the particle starts at the origin with a velocity of 8 mm s⁻¹, find the equation for its velocity in terms of its displacement.

Test yourself

Revision questions

- 37. The number of organisms in a sample of water from a pond is increasing at a rate proportional to the number of organisms. If there are originally 15000 organisms, and 3 days later there are 20000, how many are there after a week?
- 38. The velocity of a particle is given by $v = t^2 t 2$ m s⁻¹.

Find:

- (a) the time when the displacement is minimum;
- (b) the acceleration after 3 s.
- 39. The decay of a substance over t years is given by the formula $\frac{dM}{dt} = -0.3 \, M$. If the substance weighs 20 grams, how long will it take to decay to 5 grams?
- **40.** Find an equation for the displacement of a particle from the origin if its acceleration is given by

$$\frac{dv}{dt} = 8t - 6 \quad \text{cm s}^{-2}$$

and initially the particle is at rest 2 cm to the right of the origin.

41. The displacement of a particle is given by

$$x = t^4 - 4t^2 + 4$$

where x is in metres and t is in minutes. Find:

(a) initial displacement and velocity;

- (b) acceleration after 5 s;
- (c) when the particle is at the origin.
- 42. The velocity of an object is given by $v = 3 \cos 3t$. Show that if the object is initially at the origin, its acceleration is always -9 times its displacement.
- 43. A rocket is fired from the top of a 50 m cliff. Its initial velocity is 250 ms⁻¹ and its angle of projection is 45°. Neglecting air resistance, show that the equation of its flight is given by:

$$y = -\frac{x^2}{6250} + x + 50$$
 $(g = 10 \text{ m s}^{-2}).$

Hence find how far the rocket lands from the foot of the cliff.

- 44. A spherical balloon is being inflated so that the surface area is increasing at a rate of 0.2 cm²s⁻¹. Find the rate of increase, (a) in the radius, and (b) in the volume, when the balloon's radius is 2 cm.
- **45.** An electrical charge $(Q \, \mathbb{C})$ after t s is given by $Q = Q_0 e^{-kt}$. Initially the charge is 150 C and after 5 s it is 120 C. Find the charge after 8 s and the rate at which it is discharging at that time.
- **46.** A particle is thrown into the air and travels at a constant acceleration of -5 m s^{-2} . If the initial velocity is 8 m s^{-1} and it starts from 2 m above the ground, find its height after 1 s:

Challenge questions

47. The acceleration of a particle is given by $\frac{d^2x}{dt^2} = 8 + \frac{4}{t^2},$

$$\frac{d^2x}{dt^2} = 8 + \frac{4}{t^2},$$

where x is in metres and t is in seconds. If x = 5and $\frac{dx}{dt} = 1$ when t = 2, find the displacement after 3 s (in exact form).

- **48.** The population of a town over t years is given by the formula $P = P_0 e^{0.0214t}$. How long will it take to double the population?
- 49. A particle starts at the origin and moves along the x-axis so that its velocity is given by $v = \cos^2 x$ ms⁻¹. When will it reach the point where $x = \frac{\pi}{4}$?
- 50. The displacement in metres from the origin after t seconds is given by the formula $x = \log_e(\cos t)$. Find:
 - (a) the initial displacement;
 - (b) when the particle is at the origin;
 - (c) the velocity after $\frac{\pi}{4}$ s.
- 51. I hit a tennis ball with a velocity of 45 m s⁻¹ at an angle of projection of α .
 - (a) Show that the ball just goes over a 4 m fence which is 20 m away when $20 \tan^2 \alpha - 405 \tan \alpha + 101 = 0.$
 - (b) In what range of values for α must the ball be hit to go over the fence? (Neglect air resistance and use 10 m s⁻² for the acceleration due to gravity.)
- 52. The acceleration of a particle is given by $a = 16 e^{2x}$. If the particle is initially at the origin and moving at a velocity of 4 cm s⁻¹, find:
 - (a) its velocity in terms of x;
 - (b) its displacement as a function of t.
- 53. A particle is moving with a displacement of $x = e^{3t} + 2$. Show that $\ddot{x} - 2\dot{x} - 3x + 6 = 0$.
- **54.** A particle has a velocity given by $\dot{x} = \tan t \, \text{m s}^{-1}$.
 - (a) Find the acceleration of the particle after $\frac{\pi}{3}$ s.
 - (b) Use Simpson's Rule with 3 function values to find the approximate value of $\int_{0}^{\frac{\pi}{3}} \tan t \, dt$ in terms of π . What information does this result give about the particle?

- 55. A car starts a journey and increases speed at a constant rate until it is travelling at 20 m s⁻¹ after 5 s. It then travels at this speed for 10 more seconds until it slows down at a constant rate to 10 m s⁻¹ after 5 more seconds.
 - (a) Graph the speed (v) of the car as a function of time t in seconds.
 - (b) On a separate diagram, graph the distance (s) travelled by the car as a function of time t.
- 56. A particle moves in a straight line. The graph shows the distance s of the particle from a fixed point at time t seconds.

- (a) What is the velocity at time t_5 ? Why?
- (b) Is the particle moving faster at time t_1 or t_2 ?
- (c) Draw the graph of the velocity of the particle as a function of t.

Rates of change

1. Melting rate 4 g min⁻¹.

2.
$$\frac{dv}{dt} = 8 + t - t^3$$
,
 $\therefore v = \int (8 + t - t^3) dt$,
 $= 8t + \frac{t^2}{2} - \frac{t^4}{4} + C$.
When $t = 0$, $v = -3$
 $-3 = 8(0) + \frac{0^2}{2} - \frac{0^4}{2} + C$
 $-3 = C$,
 $\therefore v = 8t + \frac{t^2}{2} - \frac{t^4}{4} - 3$.
When $t = 10$
 $v = 8(10) + \frac{10^2}{2} - \frac{10^4}{4} - 3$
 $= -2373 \text{ cm s}^{-1}$

 3.66 m^3

4.
$$\frac{dS}{dt} = 3t^2$$
When $t = 5$

$$\frac{dS}{dt} = 3(5^2) = 75.$$

Surface area is increasing at a rate of 75 cm² s⁻¹.

Further rates of change (3 unit)

5. 0.08 units s⁻¹.

6.
$$V = x^{3}$$

$$\frac{dV}{dt} = 3x^{2}$$

$$\frac{dx}{dt} = -1$$

$$\frac{dV}{dt} = \frac{dV}{dx} \cdot \frac{dx}{dt}$$

$$= 3x^{2}(-1).$$
When $x = 150$

$$\frac{dV}{dt} = 3(150^{2})(-1)$$

$$= -67500,$$

∴ rate of decrease is 67 500 mm³ s⁻¹.

7. $113 \text{ cm}^3 \text{ s}^{-1}$

8. (a) All sides x and all angles 60° .

$$A = \frac{1}{2} ab \sin C$$

$$= \frac{1}{2} x^2 \sin 60^\circ$$

$$= \frac{x^2}{2} \cdot \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3} x^2}{4}$$

(b)
$$A = \frac{\sqrt{3} x^2}{4}$$
$$\frac{dA}{dx} = \frac{2\sqrt{3} x}{4} = \frac{\sqrt{3} x}{2}$$
$$\frac{dA}{dt} = 3$$
$$\frac{dA}{dt} = \frac{dA}{dx} \cdot \frac{dx}{dt}$$

$$3 = \frac{\sqrt{3} x}{2} \cdot \frac{dx}{dt},$$

$$\therefore \frac{dx}{dt} = \frac{6}{\sqrt{3} x}.$$
When $x = 20$

$$\frac{dx}{dt} = \frac{6}{\sqrt{3} (20)}$$

$$= \frac{\sqrt{3}}{10} \text{ cm s}^{-1}$$

Exponential growth and decay

9. (a) $P = 36\,500 \,e^{0.053t}$

(b) 42 790

(c) .19 years

10. When
$$t = 0$$
, $T = 50$, so $T_0 = 50$,
 $\therefore T = 50e^{-kt}$.
When $t = 15$, $T = 43$
 $43 = 50e^{-15k}$
 $\frac{43}{50} = e^{-15k}$
 $0.86 = e^{-15k}$
 $\ln 0.86 = \ln e^{-15k}$
 $= -15k \ln e$
 $= -15k$
 $\frac{\ln 0.86}{-15} = k$

$$\frac{110.80}{-15} = k$$

$$0.01 = k.$$
So $T = 50 e^{-0.01t}$

(a) When
$$t = 60$$

 $T = 50 e^{-0.01t}$
 $= 50 e^{-0.01}$ (60)

= 30 e $\Rightarrow 27.4.$

So temperature after an hour is 27.4°C.

(b) When
$$T = 20$$

 $T = 50 e^{-0.01t}$
 $20 = 50 e^{-0.01t}$
 $\frac{20}{50} = e^{-0.01t}$
 $0.4 = e^{-0.01t}$
 $\ln 0.4 = \ln e^{-0.01t}$
 $= -0.01t \ln e$
 $= -0.01t$
 $\frac{\ln 0.4}{-0.01} = t$
 $91.1 = t$.

So it takes 91.1 minutes to cool down to 20°C.

11. (a) 50 g

(b) 27.4 g

(c) $\frac{dM}{dt} = -3.3$ (decaying at the rate of 3.3 g per year).

(d) 5.8 years

12. (a)
$$N = N_0 e^{kt}$$

Initially $N = 1500$,
 $\therefore N = 1500 e^{kt}$.
When $t = 2$, $N = 3500$.
 $3500 = 1500 e^{2k}$.
 $\frac{3500}{1500} = e^{2k}$

$$2.3 = e^{2k}$$

$$\ln 2.3 = \ln e^{2k}$$

$$= 2k \ln e$$

$$= 2k$$

$$\frac{\ln 2.3}{2} = k$$

$$0.424 = k,$$

$$\therefore N = 1500 e^{0.424t}.$$

(b) When t = 7 $N = 1500 e^{0.424(7)}$ = 29 108.

So there are 29 108 bacteria after 7 hours.

(c) When
$$N = 1000000$$

 $1000000 = 1500 e^{0.424t}$
 $\frac{1000000}{1500} = e^{0.424t}$
 $666.7 = e^{0.424t}$
 $\ln 666.7 = \ln e^{0.424t}$
 $= 0.424t \ln e$
 $= 0.424t$
 $\frac{\ln 666.7}{0.424} = t$
 $15.3 = t$.

So there are 1 000 000 bacteria after 15.3 hours.

Further growth and decay (3 unit)

13. (a) P = 22 in the formula $T = P + Ae^{kt}$ (b) 39.4 minutes

14. (a)
$$N = P + Ae^{kt}$$

$$\frac{dN}{dt} = kAe^{kt}$$

$$= k(P + Ae^{kt} - P)$$

$$= k(N - P)$$

(b)
$$N = P + Ae^{kt}$$
 where $P = 1000$.
When $t = 0$, $N = 2500$
 $2500 = 1000 + Ae^0$
 $1500 = A$,
 $\therefore N = 1000 + 1500 e^{kt}$.
When $t = 5$, $N = 3000$
 $3000 = 1000 + 1500e^{5k}$
 $2000 = 1500 e^{5k}$
 $1.33 = e^{5k}$
 $1.33 = \ln e^{5k}$
 $0.2877 = 5k \ln e$
 $= 5k$
 $0.0575 = k$,
 $\therefore N = 1000 + 1500 e^{0.0575t}$.
For double N , $N = 5000$
 $5000 = 1000 + 1500 e^{0.0575t}$
 $4000 = 1500 e^{0.0575t}$
 $2.67 = e^{0.0575t}$
 $10.9808 = 0.0575t \ln e$

= 0.0575t

 $17 \div t$.

So it takes 17 hours to double the initial number of bacteria.

15.
$$A = 0.199$$
, $t = 1.44$
16. (a) $v = 10 + Ae^{-kt}$

$$\frac{dv}{dt} = -kAe^{-kt}$$

$$= -k(10 + Ae^{-kt} - 10)$$

$$= -k(v - 10)$$

(b) When
$$t = 0$$
, $v = 30$
 $30 = 10 + Ae^{\circ}$
 $20 = A$,
 $\therefore v = 10 + 20 e^{-kt}$.
When $t = 3$, $v = 25$
 $25 = 10 + 20 e^{-3k}$
 $15 = 20 e^{-3k}$
 $0.75 = e^{-3k}$
 $\ln 0.75 = \ln e^{-3k}$
 $-0.288 = -3k \ln e$
 $= -3k$
 $0.0959 = k$,
 $\therefore v = 10 + 20 e^{-0.0959t}$.

(c) When
$$v = 15$$
:

$$15 = 10 + .20 e^{-0.0959t}.$$

$$5 = 20 e^{-0.0959t}$$

$$0.25 = e^{-0.0959t}$$

$$\ln 0.25 = \ln e^{-0.0959t}$$

$$-1.386 = -0.0959t \ln e$$

$$= -0.0959t$$

$$14.5 = t.$$

So velocity reaches 15 m s⁻¹ after 14.5 s.

(d)
$$v = 10 + 20 e^{-0.0959t}$$

As t approaches infinity, $e^{-0.0959t}$ approaches 0, so v approaches 10 m s⁻¹.

Motion and differentiation

17. (a)
$$a = \frac{-2}{49} \text{ cm s}^{-2}$$

(b) $x = 1.099 \text{ cm}$
(c) $t = \sqrt{e^5 - 3}$

18. (a)
$$v = \frac{ds}{dt} = 3t^2 - 8t + 3$$

When $t = 0$, $v = 3(0)^2 - 8(0) + 3 = 3$.

So initial velocity is 3 m s⁻¹.

(b) At the origin,
$$s = 0$$
,
i.e. $t^3 - 4t^2 + 3t = 0$
 $t(t^2 - 4t + 3) = 0$
 $t(t - 3)(t - 1) = 0$,
 $\therefore t = 0, 1, 3$.

So the particle is at the origin initially, after 1 second, and after 3 seconds.

(c)
$$a = \frac{d^2s}{dt^2} = 6t - 8$$
.
When $t = 4$, $a = 6(4) - 8$

So acceleration after 4 seconds is 16 m s⁻².

19. (a)
$$\dot{x} = 3e^{3t}$$
, $\dot{x}' = 9e^{3t}$
(b) 9 cm s^{-2}
(c) Show that $9e^{3t} - 5(3e^{3t}) + 6(e^{3t} + 5) = 30$

20. (a) For maximum
$$h$$
, $\frac{dh}{dt} = 0$, i.e. $3 - 2t = 0$ $3 = 2t$ $1.5 = t$

$$\left(\frac{d^2h}{dt^2} = -2 < 0, \text{ so } h \text{ is a maximum}\right)$$

Maximum height occurs when t = 1.5 seconds.

$$h = 10 + 3t - t^{2}$$

$$= 10 + 3(1.5) - (1.5)^{2}$$

$$= 10 + 4.5 - 2.25$$

$$= 12.25.$$

So maximum height is 12.25 m.

(b)
$$v = \frac{dh}{dt} = 3 - 2t$$

When $t = 2$, $v = 3 - 2(2)$
= -1.

So velocity is -1 m s^{-1} after 2 seconds.

(c)
$$h = 10 + 3t - t^2$$

Initially $t = 0$,
i.e. $h = 10 + 3(0) - 0^2$
= 10.

So initial height is 10 m.

(d) When
$$t = 2$$
, $h = 10 + 3(2) - 2^2 = 12$,

so initially the particle is 10 m from 0 and after $1\frac{1}{2}$ seconds it is 12.25 m from 0. Therefore it travels 2.25 m in the first $1\frac{1}{2}$ seconds. When t=2, h=12, so it then travels another 0.25 m. Therefore total distance is 2.5 m.

Motion and integration

21.
$$(4\pi - 2)$$
 cm

22.
$$\dot{x} = \frac{1}{2t + 7}$$

 $x = \int v \, dt$
 $= \int \frac{1}{2t + 7} \, dt$
 $= \frac{1}{2} \int \frac{2}{2t + 7} \, dt$
 $= \frac{1}{2} \log_e (2t + 7) + C$
When $t = 0, x = 0$
 $0 = \frac{1}{2} \log_e 7 + C$,
 $\therefore C = -\frac{1}{2} \log_e 7$,
 $\therefore x = \frac{1}{2} \log_e (2t + 7) - \frac{1}{2} \log_e 7$.
When $t = 3, x = \frac{1}{2} \log_e [2(3) + 7] - \frac{1}{2} \log_e 7$
 $= \frac{1}{2} \log_e 13 - \frac{1}{2} \log_e 7$
 $= \frac{1}{2} \log_e \frac{13}{7}$
 $= 0.31$.

So displacement after 3 seconds is 0.31 m. 23. 65.1 m

24.
$$x = \int (4t - 3) dt$$

= $2t^2 - 3t + C$
When $t = 5$, $x = 3$,
so $3 = 2(5)^2 - 3(5) + C$
= $50 - 15 + C$
 $-32 = C$,
 $\therefore x = 2t^2 - 3t - 32$.
When $t = 10$,
 $x = 2(10)^2 - 3(10) - 32$
= 138 .

So displacement after 10 s is 138 cm.

Velocity and acceleration in terms of x (3 unit)

25. 0.75 m s⁻¹

26. (a)
$$\frac{d}{dx}(\frac{1}{2}v^2) = -x^2$$

 $\frac{1}{2}v^2 = \int -x^2 dx$
 $= -\frac{x^3}{3} + C$
When $x = 6$, $v = 0$
 $0 = -\frac{6^3}{3} + C$
 $72 = C$,
 $\therefore \frac{1}{2}v^2 = -\frac{x^3}{3} + 72$,
 $v^2 = -\frac{2x^3}{3} + 144$,
 $v = \pm \sqrt{-\frac{2x^3}{3} + 144}$.

Since the particle starts 6 cm to the right of O and moves towards O, its velocity is negative,

$$\therefore v = -\sqrt{-\frac{2x^3}{3} + 144}.$$

(b) When
$$x = 0$$

 $v = -\sqrt{-\frac{2(0^3)}{3} + 144}$.
 $= -12$.

So velocity is -12 cm s^{-1} .

(b)
$$\sin (\pi x) = -4\pi$$
 has no solutions, so $v \neq 0$.

28.
$$\frac{dx}{dt} = 2x,$$

$$\therefore \frac{dt}{dx} = \frac{1}{2x}.$$
(a)
$$t = \int \frac{1}{2x} dx$$

$$= \frac{1}{2} \log_e x + C$$

When
$$t = 0$$
, $x = 1$

$$0 = \frac{1}{2} \log_{e} 1 + C$$

$$0 = C$$
,
$$\therefore t = \frac{1}{2} \log_{e} x$$
,
$$2t = \log_{e} x$$
,
$$\therefore x = e^{2t}$$
.
When $t = 2$

$$x = e^{4}$$

$$= 54.6 \text{ cm}$$
(b) $v = 2x$
When $t = 2$, $x = 54.6$

$$v = 109.2 \text{ cm s}^{-1}$$
(c) $0 = e^{2t}$ has no solution,
$$\therefore x \neq 0$$
.
(d) $\frac{dx}{dt} = 2e^{2t}$

$$\frac{d^{2}x}{dt^{2}} = 4e^{2t}$$

$$= 4x$$
,
$$\therefore a = 4x$$
.

Projectiles (3 unit)

Projectiles (3 unit)

29. (a)
$$\ddot{x} = 0$$
, $\dot{x} = u \cos \alpha$, $x = ut \cos \alpha$
 $\ddot{y} = -g$, $\dot{y} = -gt + u \sin \alpha$, $y = -\frac{gt^2}{2} + ut \sin \alpha$
(b) Maximum height is 60 m.

(b) Maximum height is 60 m.
30.
$$\ddot{x} = 0$$
,
 $\therefore \dot{x} = C$
 $= 10 \cos \theta$
 $x = \int (10 \cos \theta) dt$
 $= 10t \cos \theta + k$.
When $t = 0$, $x = 0$
 $0 = 10(0) \cos \theta + k$
 $= k$,
 $\therefore x = 10t \cos \theta$. (1)
 $\ddot{y} = -10$
 $\dot{y} = \int (-10) dt$
 $= -10t + k$.
When $t = 0$, $\dot{y} = 10 \sin \theta$
 $10 \sin \theta = -10(0) + k$
 $= k$,
 $\therefore \dot{y} = -10t + 10 \sin \theta$,
 $y = \int (-10t + 10 \sin \theta) dt$,
 $= -5t^2 + 10t \sin \theta + k$.
When $t = 0$, $y = 0$
 $0 = -5(0^2) + 10(0) \sin \theta + k$
 $= k$,
 $\therefore y = -5t^2 + 10t \sin \theta$. (2)

From (1),
$$t = \frac{x}{10 \cos \theta}$$
.
Substitute into (2):
 $y = -5\left(\frac{x}{10 \cos^2 \theta}\right)^2 + 10\left(\frac{x}{10 \cos \theta}\right) \sin \theta$

$$= \frac{-5x^2}{100 \cos^2 \theta} + \frac{x \sin \theta}{\cos \theta}$$

$$= -\frac{x^2}{20} \sec^2 \theta + x \tan \theta$$

$$= -\frac{x^2}{20} (\tan^2 \theta + 1) + x \tan \theta$$
31. (a) 5.5 s
(b) 85 m

32. Angle of projection is 0° , so initially:
$$x = V \cos 0^\circ$$

$$= V,$$

$$\therefore x = Vt.$$
Also initially, $\dot{y} = V \sin 0^\circ$

$$= 0.$$

$$\dot{y} = -10$$

$$\dot{y} = -10t + k.$$
When $t = 0$, $\dot{y} = 0$

$$0 = -10(0) + k$$

$$= k,$$

$$\dot{y} = -5t^2 + k.$$
When $t = 0$, $y = 5$

$$5 = -5(0^2) + k$$

$$= k,$$

$$\dot{y} = -5t^2 + 5.$$
When $t = 3$, $t = 0$.
From (1): $t = \frac{x}{V}$

$$= \frac{3}{V}$$
.
(Note that V must be positive since t is positive.)
When $t = \frac{3}{V}$, $y = 0$.
From (2): $0 = -5\left(\frac{3}{V}\right)^2 + 5$

 $= -45 + 5V^2$ $45 = 5V^2$

3 = V (V is positive)

 $9 = V^2$

So the initial velocity is 3 m s^{-1} .

Simple harmonic motion (3 unit)

33. (a)
$$\frac{d^2x}{dt^2} = -4x$$

(b)
$$t = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \dots$$
 seconds.

- (c) Period is π .
- (d) Maximum displacement is 5 cm.

34.
$$x = 3\cos 2t + 4\sin 2t$$

 $\dot{x} = -6\sin 2t + 8\cos 2t$
 $\ddot{x} = -12\cos 2t - 16\sin 2t$
 $= -4(3\cos 2t + 4\sin 2t)$
 $= -4x$

: the particle is moving in SHM.

For maximum speed, $\ddot{x} = 0$

$$-12\cos 2t - 16\sin 2t = 0 \tan 2t = -0.75 2t = -0.64$$

$$\dot{x} = -6 \sin(-0.64) + 8 \cos(-0.64)$$

= 10

So maximum speed is 10 m s⁻¹

- 35. (a) Differentiate $x = 7 \sin(x + \pi)$.
 - (b) At the origin, x = 0.
 - (c) Amplitude is 7. Period is 2π .

36.
$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = -4x$$

$$\frac{1}{2}v^2 = \int -4x \, dx$$

$$= -2x^2 + k$$
When $x = 0, v = 8$

$$\frac{1}{2}(8^2) = -2(0^2) + k$$

$$32 = k,$$

$$\therefore \frac{1}{2}v^2 = -2x^2 + 32,$$

$$v^2 = -4x^2 + 64,$$

$$v = \pm \sqrt{-4x^2 + 64}.$$
Condition $x = 0, v = 8$ is satisfied by

Condition x = 0, v = 8 is satisfied by $v = \sqrt{-4x^2 + 64}$.

Revision questions

- 37. 29 350 organisms
- 38. (a) For minimum displacement, v = 0, i.e. $t^2 - t - 2 = 0$ (t-2)(t+1)=0t = 2 or -1 $\frac{dv}{dt} = 2t - 1.$ When t = 2, $\frac{dv}{dt} = 2(2) - 1 > 0$ (minimum).

So minimum displacement occurs after 2 seconds.

(b)
$$a = 2t - 1$$

When $t = 3$, $a = 2(3) - 1$

So acceleration after 3 seconds is 5 m s⁻².

39. 4.62 years
$$(M_0 = 20 \text{ and } k = 0.3)$$

40.
$$v = \int (8t - 6) dt$$

 $= 4t^2 - 6t + C$
When $t = 0$, $v = 0$
 $0 = 4(0)^2 - 6(0) + C$
 $= C$,
 $\therefore v = 4t^2 - 6t$.
 $x = \int (4t^2 - 6t) dt$
 $= \frac{4t^3}{3} - 3t^2 + k$.
When $t = 0$, $x = 2$
 $2 = \frac{4(0)^3}{3} - 3(0)^2 + k$
 $= k$,
 $\therefore x = \frac{4t^3}{3} - 3t^2 + 2$.

- 41. (a) Initial displacement = 4 m Initial velocity = 0 m min^{-1}
 - (b) $a = 292 \text{ m min}^{-2}$
 - (c) t = 1.41 min

42.
$$x = \int 3 \cos 3t \, dt$$

$$= \sin 3t + C$$
When $t = 0, x = 0$

$$0 = \sin 0 + C$$

$$= C,$$

$$\therefore x = \sin 3t,$$

$$a = \frac{dv}{dt} = -9 \sin 3t,$$

$$= -9x \quad (\text{since } x = \sin 3t).$$

- 43. Rocket lands 6299.6 m (6.2996 km) from the foot of the cliff.
- **44.** (a) $S = 4\pi r^2$ $\frac{dS}{dr} = 8\pi r$ $\frac{dS}{dt} = 0.2 \, \mathrm{cm}^2 \mathrm{s}^{-1}$ $\frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$ $0.2 = 8\pi r \frac{dr}{dt},$ $\therefore \frac{dr}{dt} = \frac{0.2}{8\pi r}.$ When r = 2 $\frac{dr}{dt} = \frac{0.2}{8\pi(2)}$ \div 0.004. So rate of increase is 0.004 cm s⁻¹.

$$(b) \quad V = \frac{4}{3}\pi r^3$$
$$\frac{dV}{dr} = 4\pi r^2$$

When
$$r = 2$$
, $\frac{dr}{dt} = 0.004$
 $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$
 $= 4\pi r^2 (0.004)$
 $= 4\pi (2^2)(0.004)$
 $= 0.2$.

So rate of change of volume is 0.2 cm³ s⁻¹.

45. Charge is 105 coulombs after 8 s. Rate of discharge is 4.68 C/s.

46.
$$v = \int -5 dt$$

 $= -5t + k$
When $t = 0$, $v = 8$
 $8 = -5(0) + k$
 $= k$,
 $\therefore v = -5t + 8$,
 $h = \int (-5t + 8) dt$,
 $= -\frac{5t^2}{2} + 8t + C$.
When $t = 0$, $h = 2$
 $2 = -\frac{5(0^2)}{2} + 8(0) + C$
 $= C$,
 $\therefore h = -\frac{5t^2}{2} + 8t + 2$.
When $t = 1$
 $h = -\frac{5(1^2)}{2} + 8(1) + 2$
 $= 7\frac{1}{2}$.

So the height is $7\frac{1}{2}$ m after 1 s.

Challenge questions

47.
$$x = 4t^2 - 4 \log_e t - 13t + 15 + 4 \log_e 2$$
.
After 3 s, displacement is $12 + 4 (\log_e 2 - \log_e 3)$ m.

48. To double
$$P$$
, $P = 2P_0$.

$$P = P_0 e^{0.0214t}$$

$$2P_0 = P_0 e^{0.0214t}$$

$$2 = e^{0.0214t}$$

$$\ln 2 = \ln e^{0.0214t}$$

$$= 0.0214t \ln e$$

$$= 0.0214t$$

$$\frac{\ln 2}{0.0214} = t$$

So the population will double in 32.4 years.

50. (a) When
$$t = 0$$
, $x = \log_e (\cos 0)$
= $\log_e 1$
= 0.

So initially the particle is at the origin.

(b) At the origin
$$x = 0$$
,
i.e. $0 = \log_e(\cos t)$,
 $\therefore \cos t = e^0$
 $= 1$
 $t = 0, 2\pi, 4\pi, 6\pi, \dots$

(c)
$$v = \frac{dx}{dt} = \frac{-\sin t}{\cos t}$$

= $-\tan t$
When $t = \frac{\pi}{4}$, $v = -\tan \frac{\pi}{4}$
= -1 .

So the velocity is -1 m s^{-1} after $\frac{\pi}{4}$ s.

51. (a) Find the Cartesian equation for x and y; substitute x = 20, y = 4.

(b)
$$14^{\circ}10' \le \alpha \le 87^{\circ}08'$$

52. (a)
$$\frac{d}{dx} (\frac{1}{2} v^2) = 16e^{2x}$$

 $\frac{1}{2} v^2 = \int 16e^{2x} dx$
 $= 8e^{2x} + C$
When $x = 0$, $v = 4$
 $\frac{1}{2}(4^2) = 8e^0 + C$
 $8 = 8 + C$
 $0 = C$,
 $\therefore \frac{1}{2} v^2 = 8e^{2x}$
 $v^2 = 16e^{2x}$
 $v = \pm \sqrt{16e^{2x}}$
 $= \pm 4e^x$.

The condition x = 0 when v = 4 is satisfied by $v = 4e^x$.

$$v = 4e^{x}.$$
(b) $\frac{dx}{dt} = 4e^{x},$

$$\frac{dt}{dx} = \frac{1}{4e^{x}}$$

$$= \frac{1}{4}e^{-x}$$

$$t = \int \frac{1}{4}e^{-x} dx$$

$$= -\frac{1}{4}e^{-x} + C.$$
When $t = 0, x = 0$

$$0 = -\frac{1}{4}e^{0} + C$$

$$C = \frac{1}{4},$$

$$\therefore t = -\frac{1}{4}e^{-x} + \frac{1}{4}$$

$$4t = -e^{-x} + 1$$

$$e^{-x} = 1 - 4t$$

$$\frac{1}{e^{x}} = 1 - 4t$$

$$e^{x} = \frac{1}{1 - 4t},$$

$$\therefore x = \log_{e} \frac{1}{1 - 4t}.$$

53. Show
$$\ddot{x} - 2\dot{x} - 3x + 6$$

= $9e^{3t} - 2(3e^{3t}) - 3(e^{3t} + 2) + 6$
= 0

$$54. (a) \qquad \ddot{x} = \sec^2 t$$

$$When t = \frac{\pi}{3},$$

$$\ddot{x} = \sec^2 \frac{\pi}{3}$$

$$= 2^2$$

(b)
$$\int_{a}^{b} f(x) dx$$

$$= \frac{b - a}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right]$$

$$\int_{0}^{\frac{\pi}{3}} \tan t dt$$

$$= \frac{\frac{\pi}{3} - 0}{6} \left[f(0) + 4f \left(\frac{\pi}{6} \right) + f \left(\frac{\pi}{3} \right) \right]$$

$$= \frac{\pi}{18} \left[\tan 0 + 4 \tan \frac{\pi}{6} + \tan \frac{\pi}{3} \right]$$

$$= \frac{\pi}{18} \left[0 + 4 \times \frac{1}{\sqrt{3}} + \sqrt{3} \right]$$

$$= \frac{\pi}{18} \left[\frac{4}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \sqrt{3} \right]$$

$$= \frac{\pi}{18} \left[\frac{4\sqrt{3}}{3} + \frac{3\sqrt{3}}{3} \right]$$

$$= \frac{7\sqrt{3}\pi}{54}$$

This is the change in displacement of the particle between t = 0 and $t = \frac{\pi}{3}$.

55. (a)

56. (a) At t_5 , the tangent is horizontal, so the velocity is zero.

(b) The tangent is steeper at t_2 than at t_1 , so the velocity is greater at t_2 than t_1 .

The velocity is given by the gradient of the tangent along the displacement curve.

