SIMPLE HARMONIC MOTION

EXERCISE 6.8

- 1. A particle is moving in simple harmonic motion, with displacement at any time t seconds given by $x = 2 \cos t$.
 - (a) Sketch the graph of its displacement.
 - (b) Write down the equation for the velocity of the particle, and sketch the graph of the velocity.
 - (c) Find the equation and sketch the graph of the acceleration of the particle.
- 2. A particle is moving in SHM such that its displacement at any time t seconds is given by $x = 5 \sin t$.
 - (a) Sketch the graph of its displacement.
 - (b) Write down the equation for the velocity of the particle, and sketch the graph of the velocity.
 - (c) Find the equation and sketch the graph of the acceleration of the particle.
- 3. A particle is oscillating about a central point so that its displacement at any time t seconds is given by
 - $x = 4\cos 2t.$
 - (a) Sketch the graph of its displacement.
 - (b) Find the times when the particle will have maximum displacement, and find this maximum displacement.
 - (c) Write down the equation for the velocity of the particle, and sketch the graph of the velocity.
 - (d) Find the velocity when the particle is at its maximum displacement.
 - (e) Find the equation and sketch the graph of the acceleration of the particle.
 - (f) What is the acceleration when the particle is at the origin?

- A particle moves in SHM so that its acceleration is given by
 \vec{x} = -4x \text{ ms}^{-2}.
 - (a) Show that $x = \cos 2t$ is a formula for the displacement of the particle.
 - (b) Find the amplitude and period of the motion.
 - (c) Sketch the graph of the particle's displacement.
- 5. A particle moves in SHM so that its acceleration is given by
 - $\ddot{x} = -9x \text{ ms}^{-2}$.
 - (a) Show that $x = 2 \cos 3t$ is a formula for the displacement of the particle.
 - (b) Find the endpoints of the motion.
 - (c) Calculate the velocity when the particle is at the endpoints.
 - (d) Find the velocity and acceleration at the centre of the motion.
- 6. (a) Show that a particle moving in SHM with displacement $x = 7 \cos 5t$ has acceleration given by $\ddot{x} = -25x$.
 - (b) Find the times at which the particle will have maximum displacement, and find this maximum displacement.
 - (c) What is the period of the motion?
- 7. A particle is moving in SHM with acceleration given by $\ddot{x} = -16x$ ms⁻².
 - (a) Show that the particle with displacement given by
 x = 3 sin 4t satisfies this condition for acceleration.
 - (b) Find the times when the particle will be at rest.
 - (c) Find the displacement and acceleration at these times.

- 8. A particle is moving in SHM with displacement, in metres, over time t seconds, given by $x = 2 \sin 6t$.
 - (a) Find its acceleration in terms of x.
 - (b) Find the maximum speed of the particle.
 - (c) When will the particle be at the origin, and what will its velocity be at these times?
 - (d) Find the equation of the velocity of the particle in terms of x.
- 9. A particle's displacement is given by $x = 2 \cos \left(t + \frac{\pi}{4}\right)$ m at time t seconds.
 - (a) Show that the particle is moving in SHM (i.e., show that its acceleration is proportional to the displacement).
 - (b) Find the times at which the particle will be at the origin.
 - (c) Write down the period of the motion.
 - (d) Find the maximum displacement.
- 10. (a) Show that a particle is moving according to SHM if its displacement is given by
 x = 5 cos 3t + 2 sin 3t, where
 x is in metres and t is in seconds.
 - (b) Find the maximum speed.
- II. A particle is moving in SHM and its acceleration is given by $\ddot{x} = -9x \text{ cms}^{-2}$.
 - (a) Show that $x = 4 \cos(3t + \pi)$ is a possible equation for the displacement of the particle.
 - (b) What will the exact distance of the particle from the origin be when the velocity is 6 cms⁻¹?
 - (c) Write down the amplitude and period of the motion.

- 12. The velocity of a particle moving in SHM in a straight line is given by $v^2 = 4x x^2 \text{ ms}^{-1}$, where x is displacement in metres.
 - (a) Find the two points between which the particle is oscillating.
 - (b) Find the centre of the motion.
 - (c) Find the maximum speed of the particle.
 - (d) Find the acceration of the particle in terms of x.
- 13. A particle is moving in SHM with acceleration $\frac{d^2x}{dt^2} = -4x \text{ ms}^{-2}$. If the particle starts at the origin with a velocity of 3 ms⁻¹, find
 - (a) the endpoints of its motion
 - (b) the exact speed when the particle is 1 m from the origin.
- 14. A weight is suspended from a spring and pulled down to its maximum displacement of 9 cm, and then let go. Its acceleration is given by $\ddot{x} = -\frac{1}{9}x \text{ cms}^{-2}. \text{ Find}$
 - (a) the equation of its velocity in terms of x
 - (b) its exact position when its velocity is 2 cms⁻¹
- 15. The period of a particle moving in SHM is 6 s and its amplitude is 8 cm. Calculate its velocity and acceleration (correct to 1 decimal place) when the displacement is 5 cm from the centre of the motion.
- 16. A particle moves in a straight line so that its acceleration at any time is given by $\frac{d^2x}{dt^2} = -9x$. Find its period, amplitude and displacement at time t if initially the particle is 2 cm from the origin and has velocity $2\sqrt{3}$ cms⁻¹.

17. A particle moves in a line so that its acceleration is given by

 $\frac{d^2x}{dt^2} = 8 - 2x$. Initially, the particle is at the origin and has velocity $3\sqrt{2}$ ms⁻¹.

- (a) Find the interval in which the particle will travel.
- (b) Is the motion of the particle SHM?
- 18. A weight is oscillating at the end of a spring, with velocity given by $v^2 = 900 1600x^2 \text{ cms}^{-1}$.
 - (a) Find the acceleration of the weight with respect to x.
 - (b) Find the period of the motion.

- (c) Find the maximum velocity of the weight.
- 19. (a) If $x = a \sin nt + b \cos nt$, find the acceleration of the particle in terms of t, and show that $\ddot{x} = -n^2x$.
 - (b) Find the amplitude and period of the motion.
 - (c) Find the maximum velocity.
- 20. A particle moves in SHM with amplitude 5 cm and period 6 seconds. Find
 - (a) the velocity when the particle is 2.5 cm from the centre of motion
 - (b) the maximum acceleration

ANSWERS

EXERCISE 6.8

 $I. (a) x = 2 \cos t$

(b) $v = -2 \sin t$

(c) $a = -2 \cos t$

2. (a) $x = 5 \sin t$

(b) $v = 5 \cos t$

(c)
$$a = -5 \sin t$$

3. (a)
$$x = 4 \cos 2t$$

(b)
$$t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \ldots; x = \pm 4$$

(c)
$$v = -8 \sin 2t$$

(d)
$$v = 0$$

$$(e) a = -16 \cos 2t$$

$$(f) a = 0$$

$$4.(a) x = \cos 2t$$

$$\dot{x} = -2\sin 2t$$

$$\dot{x} = -2\sin 2t$$

$$\dot{x} = -4\cos 2t$$

$$= -4x$$

$$=-4x$$

(b) amplitude = 1, period =
$$\pi$$

(c)
$$x = \cos 2t$$

5. (a)
$$x = 2 \cos 3t$$

$$\dot{x} = -6 \sin 3t$$

$$\ddot{x} = -18\cos 3t$$

$$\dot{x} = -6 \sin 3t$$

$$\ddot{x} = -18 \cos 3t$$

$$= -9(2 \cos 3t)$$

$$=-9x$$

(b)
$$\pm 2$$
 (c) $v = 0$ (d) $v = \pm 6$; $a = 0$

$$6.(a) x = 7 \cos 5t$$

$$\dot{x} = -35 \sin 5t$$

$$\dot{x} = -35 \sin 5t$$

$$\dot{x} = -175 \cos 5t$$

$$= -25(7\cos 5t)$$

$$= -25x$$

(b)
$$t = 0, \frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \dots; x = \pm 7$$

(c) Period =
$$\frac{2\pi}{5}$$

7.(a)
$$x = 3 \sin 4t$$

$$\dot{x} = 12\cos 4t$$

$$\ddot{x} = -48 \sin 4t$$

$$= -16(3\sin 4t)$$

$$= -16x$$

(b)
$$t = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \dots$$

(b)
$$t = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \dots$$

(c) $x = \pm 3$; $\ddot{x} = \pm 48$ 8.(a) $\ddot{x} = -36x$

(h)
$$12 \text{ ms}^{-1}$$

(b)
$$12 \text{ ms}^{-1}$$

(c) $t = 0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \dots; \dot{x} = \pm 12 \text{ ms}^{-1}$

(d)
$$v = \pm \sqrt{144 - 36x^2}$$

9. (a)
$$x = 2 \cos \left(t + \frac{\pi}{4}\right)$$
;

$$\dot{x} = -2\sin\left(t + \frac{\pi}{4}\right); \ddot{x} = -2\cos\left(t + \frac{\pi}{4}\right)$$

=
$$-x$$
, \therefore SHM (b) $t = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \dots$
(c) 2π (d) $x = \pm 2$

10. (a)
$$x = 5 \cos 3t + 2 \sin 3t$$

$$\dot{x} = -15\sin 3t + 6\cos 3t$$

$$\ddot{x} = -45\cos 3t - 18\sin 3t$$

$$= -9(5\cos 3t + 2\sin 3t)$$

$$=-9x$$

(b)
$$16.2 \text{ ms}^{-1}$$

II.(a)
$$x = 4 \cos(3t + \pi)$$

$$\dot{x} = -12\sin\left(3t + \pi\right)$$

$$\ddot{x} = -36\cos\left(3t + \pi\right)$$

$$= -9[4\cos(3t + \pi)]$$

$$=-9x$$

(b)
$$2\sqrt{3}$$
 cm (c) Amplitude = 4, period = $\frac{2\pi}{3}$

$$12.(a) 0 m, 4 m (b) 2 m (c) 2 ms^{-1}$$

(d)
$$\ddot{x} = 2 - x$$
 | 13. (a) ± 1.5 m (b) $\sqrt{5}$ ms⁻¹

14. (a)
$$v = \frac{\pm \sqrt{81 - x^2}}{3}$$
 (b) $x = \pm 3\sqrt{5}$ cm

15.
$$v = -6.5 \text{ cms}^{-1}$$
; $a = -5.5 \text{ cms}^{-2}$

16. Period
$$\frac{2\pi}{3}$$
, amplitude $\frac{4\sqrt{3}}{3}$;

$$x = \frac{4\sqrt{3}}{3}\cos\left(3t - \frac{\pi}{6}\right)$$
 or

$$x = \frac{4\sqrt{3}}{3}\sin\left(3t + \frac{\pi}{3}\right)$$

$$x = \frac{4\sqrt{3}}{3}\sin\left(3t + \frac{\pi}{3}\right)$$

17. (a) Between
$$x = -1$$
 and $x = 9$

(b) Yes — centre of motion is
$$x = 4$$

Let
$$X = x - 4$$
:

$$\frac{d^2x}{dt^2} = 8 - 2x = -2(x - 4) = -2X (n = \sqrt{2})$$

18. (a)
$$a = -1600x$$
 (b) Period = $\frac{\pi}{20}$

(c)
$$30 \text{ cms}^{-1}$$

19. (a)
$$\ddot{x} = -an^2 \sin nt - bn^2 \cos nt$$

= $-n^2(a \sin nt + b \cos nt)$
= $-n^2x$

(b) Amplitude:
$$\sqrt{a^2 + b^2}$$
; period = $\frac{2\pi}{n}$

(c)
$$n\sqrt{a^2+b^2}$$
 20. (a) $-\frac{5\sqrt{3}\pi}{6}$ cms⁻¹

(b)
$$\frac{5\pi^2}{9}$$
 cms⁻²