SOUTH SYDNEY HIGH SCHOOL

MATHS - EXTI WORKSHEETS

3D TRIGONOMETRY

Exercises

37.

ABCD is a triangular pyramid with BC = 5 m. CD = 8 m. BD = 11 m. AB = AC and \angle ACB = 78°. Calculate:

- (a) ∠BCD;
- (b) length AB (to the nearest metre).

An aeroplane flying at 2000 m is observed to be on a bearing of 314°T with an angle of elevation of 29°. After 1 minute it is bearing 020°T at an angle of elevation of 25°. Calculate:

- (a) distance AE (to the nearest metre);
- (b) distance DE (to the nearest metre);
- (c) ZAED.
- (d) Hence find the distance the plane travels in that minute and its speed in km/h.

39. A cone has a base diameter of 20 cm and a perpendicular height of 15 cm. Find the vertical angle at the top of the cone.

40.

Calculate the value of α in degrees and minutes.

Trigonometry in 3 dimensions (3 unit) - | SOLUTION

37. (a)
$$\angle BCD = 113^{\circ}35'$$
 (cosine rule)
(b) AB = 12 m (sine rule)

$$\tan 29^{\circ} = \frac{2000}{AE},$$

$$\therefore AE = \frac{2000}{\tan 29^{\circ}}$$

$$\stackrel{?}{=} 3608 \text{ m}.$$

tan 25° =
$$\frac{2000}{DE}$$
,
∴ DE = $\frac{2000}{\tan 25^{\circ}}$
÷ 4289 m.

(c)

$$\angle AED = (360^{\circ} - 314^{\circ}) + 20^{\circ}$$

= 66°

(d) In △ADE

$$c^{2} = a^{2} + b^{2} - 2ab \cos C,$$

$$\therefore AD^{2} = 3608^{2} + 4289^{2} - 2(3608)(4289) \cos 66^{\circ}$$

$$= 18824920$$

$$AD = 4338.8$$

$$AD = BC,$$

: the plane travels 4338.8 m in 1 minute.

40. ZD = YC = 4.1 m
In
$$\triangle$$
ZDY, by Pythagoras' Theorem,
DY = $\sqrt{4.1^2 + 5.7^2}$
 $ightharpoonup 7 m.$
In \triangle ADY
 $\tan \alpha = \frac{AD}{DY}$
= $\frac{3.2}{7}$
= 0.4557,

 $\therefore \alpha = 24^{\circ}30'.$