

Potts Point

Extension 1 Mathematics Assessment 3 Term 2, 2009

	1
	<i>,</i>
NAME: /	
112 117.11.	
7	

Time allowed:

50 minutes

Working must be shown for all questions.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

NOTE: $\ln x = \log_e x$, x > 0

- State the range and domain of the function $y = 2 \sin^{-1}(\frac{x}{2})$ and draw a sketch of the function, carefully 1) labelling the extremities of both the range and the domain.
- Evaluate $\int_{0}^{1.5} \frac{dx}{\sqrt{9-2x^2}}$, leaving your answer in exact form. [3]
- Evaluate $\int_{-\pi}^{6} \frac{2 \cos x}{1 + 4 \sin^2 x} dx$ using the substitution $u = 2 \sin x$. [3]
- If $f(x) = e^{x+2}$, find the inverse function $f^{-1}(x)$. [2]
 - State the domain and range of $f^{-1}(x)$. ii. [2]
 - On one diagram sketch the graphs of f(x) and $f^{-1}(x)$. iii. [3]
- A projectile is fired from a position 2m above ground level at an angle of elevation of 30. The initial 5) velocity is 1000 m/s. [Use g = -10 m/s/s]
 - Find the horizontal and vertical motion equations (velocity, acceleration, displacement)

[3]

- ii. Find the maximum height the projectile reaches
- [2]
- Find the time taken to hit the ground. (Assume the ground is level for as long as needed) i.
- Find the distance travelled by the projectile before it hits the ground. [Neglect air resistance and iv. the curvature of the Earth]

- A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has velocity v metres per second, and displacement x metres from a fixed point O on the line, where $x = 5\cos\frac{\pi t}{a}$
 - Find the period of the motion.

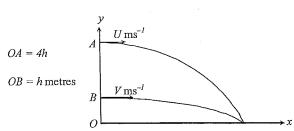
Find an expression for ν in terms of t, and hence show that $\nu^2 = \frac{\pi^2}{4} (25 - x^2)$.

[3]

[3]

Find the speed of the particle when it is 4 metres to the right of O. [1]

O is a fixed point on a given straight line. A particle moves along this line and its displacement x cm, from O at a given time, t secs, after its start of motion is given by: $x = 2 + \cos^2 t$.



Show that the acceleration is given by: $\ddot{x} = 10 - 4x$. 215 [2]

- ii. State the centre of motion.
- [1]

iii. State the first two occasions when the particle is at rest and the displacements on these occasions [3]

8)

A vertical building stands with its base O on horizontal ground. A and B are two points on the building vertically above each other such that A is 4h metres above O and B is h metres above O. A particle is projected horizontally with speed Ums⁻¹ from A and 10 seconds later a second particle is projected horizontally with speed $V \text{ ms}^{-1}$ from B. The two particles hit the ground at the same point and at the same time.

Write down expressions for the horizontal and the vertical displacements relative to O of each particle t seconds after the first particle is projected.

2

- Find the time of flight of each particle. ii.
- Show that V = 2U. [1] iii.

Domain -2 5 26 52

Range -11 5 9 5 TT

 $\int_{0}^{1.5} \frac{dn}{\sqrt{9-2\pi^{2}}}$

= [\frac{1}{52} \text{ sin } \frac{52}{3} \times \] [15]

= t sin to - 0

2 / 74

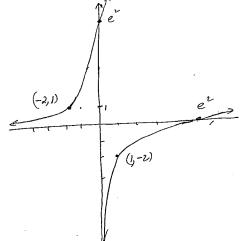
= 1/452

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x}$$

$$= \int_{0}^{\frac{1}{2}} \frac{\partial u}{\partial x} du \qquad \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x}$$

$$= \int_{0}^{2} \frac{2}{H^{4}u^{4}} du$$


$$= \left[\int_{0}^{2} du \right]_{0}^{2}$$

$$= \int_{0}^{2} \frac{2}{H^{4}u^{4}} du$$

Q4

Interchanging x and y

$$x = e^{y+2}$$
 $x = e^{y+2}$
 $x = e^{y+2}$
 $x = e^{y+2}$
 $y = (\ln x) - 2$
 $x = e^{y+2}$

(1)
$$V = \frac{2\pi}{T_{V}}$$

$$= 4$$
(1)
$$V = \frac{2\pi}{dt} = -\frac{5\pi}{2} \sin \frac{\pi t}{2}$$

$$= \frac{25\pi^{2}}{4} \sin \frac{\pi t}{2}$$

$$= \frac{25\pi^{2}}{4} \left(1 - \cos^{2} \frac{\pi t}{2}\right)$$

$$= \frac{\pi^{2}}{4} \left(25 - 25\cos \frac{\pi t}{2}\right)$$

$$= \frac{\pi^{2}}{4} \left(25 - \chi^{2}\right)$$
(11)
$$V = \frac{\pi^{2}}{4} \left(25 - \chi^{2}\right)$$

$$V = \frac{3\pi}{4}$$

$$V = \frac{$$

€ = -4× +10/

7 (1) When
$$\dot{z} = 0$$
 $4x = 10$
 $x = 2\dot{z}$
 \therefore (entre of motion is $2\dot{z}$.

OR $\ddot{z} = -4(x-2h)$
 \therefore (ante at $2\dot{z}$.

(11) Oil rest when $\dot{z} = 0$
 $4m2t = 0$
 $t = 0$, $t = II$

and displacement

 $t = 0$, $x = 3$
 $t = 1$, $x = 2$.

8)

4h A

4 B

(1) $\dot{z}_1 = ut$
 $\ddot{z}_2 = v(t-10)$
 $\ddot{y}_1 = -gt^2 + c$

But $t = 0$ (sino=0)

 $\dot{y}_2 = -gt^2 + c$

But $t = 0$ (sino=0)

 $\dot{y}_3 = -gt^2 + c$

But $t = 0$ (sino=0)

 $\dot{z}_4 = -5t^2 + 4k$

(1) Time to hit ground

A) when $\dot{z} = 0$
 $\dot{z}_3 = -5(t-10)^2 + k$
 $\dot{z}_4 = -5t^2 + 4k$

(1) Time to hit ground

A) when $\dot{z} = 0$
 $\dot{z}_3 = -5(t-10)^2 + k$
 $\dot{z}_4 = -5t^2 + 4k$

(1) Time to hit ground

A) when $\dot{z}_3 = 0$
 $\dot{z}_4 = -10 + \sqrt{3}$
 $\dot{z}_5 = 10 + \sqrt{3}$
 $\dot{z}_5 = 10$
 $\dot{z}_5 = 10$

R=500

Then time for

A is: y = -5t2+4h

· 5t2=4(500)

t = 20

and t for B:

But starts 10 pec

later : time for 8 = 10

Speed = D

 $u = \frac{\Delta}{2}$

and $v = \frac{3}{10}$

Hence v=2u

5 | 30° | 1000 m/s.

(1) $j_1 = 1000 \text{ (20)} 30$ $j_2 = -10$ $j_3 = 500 \sqrt{3}$ $j_4 = -10t + 500$ $j_5 = -10t + 500$ $j_5 = -10t + 500$

(ii) Max Height when y=0 12. 10 t=500 t=50

 $-i \quad y(50) = -5(25.0) + 500(50) + 2$ = 12502 m

y = 0 when

-5t2+500t + 2 = 0

= -500 ± 500:04

100:004 see ignore - ve

is (IV) Distance travelles

x - 500 (100) J3

= 86606 m