/10

A particle is released from rest at an origin on an x axis. Its acceleration is determined by its position so that, at position x, it is $2 \cos x$.

- 1. In which direction will it first move?
- 2. Show that its velocity is given by $v^2 = 4 \sin x$.
- 3. Where will the particle next come to rest?
- 4. Describe the subsequent motion.
- 5. What is the particle's greatest speed?
- 6. If the particle takes time T to move from $x = \pi/6$ to $x = 5\pi/6$, show that

$$2T = \int_{\pi/6}^{5\pi/5} \sqrt{\csc x} dx.$$

7. Use Simpson's rule with three funtion values to approximate T. (2 decimal places)

Angelina Name:

Total:

/10

A particle is released from rest at an origin on an x axis. Its acceleration is determined by its position so that, at position x, it is 2 cos x.

In which direction will it first move? 1.

Right of axis

2. Show that its velocity is given by $v^2 = 4 \sin x$.

$$\bar{\chi} = \frac{d}{dk} \left(\frac{1}{2} V^2 \right)$$

$$\vec{x} = \frac{d}{dx} \left(\frac{1}{2} V^2 \right) \qquad \therefore \quad 2\cos x = \frac{d}{dx} \left(\frac{1}{2} V^2 \right)$$

$$2 \sin x = \frac{1}{2} V^2$$

t=0, x=0, v=0

Where will the particle next come to rest? 3.

V=0, 45 CMX = 0 : When x= TT /

4. Describe the subsequent motion.

velocity will increase, and it will decelerate

5. What is the particle's greatest speed?

 $\max |v|$ when $2\cos x = 0$ $x = \frac{\pi}{2}, \frac{3\pi}{2}$ $\frac{d^3x}{d\epsilon^3} = -2\sin x$ when $x = \frac{\pi}{2}, \frac{d^3x}{d\epsilon^3} < 0$ & $\frac{d^3x}{d\epsilon^3} > 0$

If the particle takes time T to move from $x = \pi/6$ to $x = 5\pi/6$, show that $\frac{1}{2} - \frac{1}{2} = \frac{2}{3} = \frac{1}{3}$ б.

 $2T = \int_{0}^{5\pi/5} \sqrt{\csc x} dx.$ dx = 2 NSUNC / $T = \frac{d}{w}$ $\frac{dt}{dx} = \frac{1}{2\sqrt{\sin x}}$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x} \, dx$

Use Simpson's rule with three funtion values to approximate T. (2 decimal places) 7.

 $\frac{x}{f(x)} = \frac{\frac{\pi}{6}}{\frac{\pi}{2}} = \frac{\frac{\pi}{6}}{\frac{\pi}{6}} = \frac{\pi}{6} = \frac{\pi}{6}$ $\therefore 2T \stackrel{?}{=} \frac{2\pi}{g} \left(\sqrt{2} + 2 \right)$ T = Tg (12+2) = 1.19 (102dp)